• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 32
  • 16
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 39
  • 37
  • 19
  • 17
  • 14
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The enhancing effect of pyrite on the kinetics of ferrous iron oxidation by dissolved oxygen

Littlejohn, Patrick Oliver Leahy 05 1900 (has links)
The oxidation of ferrous in acidic sulfate media by dissolved oxygen is an important reaction in any sulfide mineral leach process that uses ferric as a surrogate oxidant. Ferric is reduced as it oxidizes metal sulfides, and the resulting ferrous is re-oxidized by dissolved oxygen. The oxidation of ferrous to ferric by dissolved oxygen is quite slow outside of elevated pressure-temperature autoclaves. However, pyrite in solution has been found to have a catalytic effect on the reaction, speeding it up significantly. This effect is particularly significant in the context of the Galvanox™ acidic sulphate atmospheric leach process. To quantify the kinetics of this reaction and the effect of pyrite, tests were run in an atmospheric batch reactor with constant tracking of pH and redox potential. The kinetics of this reaction were quantified with respect to primary variables such as acidity, pyrite pulp density, temperature, and total iron concentration. Secondary factors such as copper concentration, gas liquid mixing rate and the source of pyrite mineral were also considered. Redox potential is a logarithmic function of the ratio of the activity of free ferric to free ferrous and is complicated by speciation within the Fe(III)-Fe(II)-H₂SO₄-H₂O system. Correlating redox potential data with extent of reaction was achieved by using permanganate redox titration and the isokinetic technique to link redox potential data directly to the fraction of ferrous reacted. This technique is effective over the potential range of interest – 360 to 510 mV vs Ag/AgCl. Under these conditions the leaching rate of pyrite is appreciable, so the rate of pyrite dissolution was predicted with the shrinking sphere model developed by Bouffard et al. Ferrous oxidation in solution was simulated with an adjusted version of the model of Dreisinger and Peters, which also accounts for the catalytic effect of dissolved copper. Oxygen solubility was predicted using the model of Tromans. Experimental data show a clear enhancing effect of pyrite on ferrous oxidation. A mathematical model of this effect applicable to the conditions of Galvanox™ leaching is presented.
2

Kinetic Modeling of Pyruvate Recycling Pathways in Pancreatic β-Cells.

Rahul, Rahul 17 September 2012 (has links)
A variety of signaling mechanisms are employed to maintain healthy levels of glucose in the blood stream. The hormone insulin is one of the primary regulators of glucose homeostasis. Insulin, which activates glucose uptake, is released from pancreatic beta-cells in a bi-phasic manner. The first phase is triggered by increased ATP levels in the cell. The second release phase is triggered by the so-called amplifying pathway, which has not been fully characterized. Recent experimental evidence indicates that pyruvate-recycling pathways are key components of the amplifying pathway. The fuel intermediates from these pathways may be the signaling factors that couple insulin-release to glucose availability. The co-factor nicotinamide adenine dinucleotide phosphate (NADPH) has been identified as a putative coupling factor. In this work we develop a kinetic model for the tricarboxylic acid cycle and pyruvate recycling pathways, building on the previous modeling efforts of Westermark et al. and Yugi and Tomita. We successfully validated the model against recent experimental observations. Analysis of the model provides predictions of the flux distributions in the pyruvate recycling pathways. Moreover, model simulations provides hypotheses to guide further experimental investigation, and suggest potential drug targets for treatment of type 2 diabetes.
3

Kinetic Modeling and Assessment of Lime Pretreatment of Poplar Wood

Sierra Ramirez, Rocio 2010 December 1900 (has links)
Because of widespread availability, low cost, sustainability, and potential supply far greater than that of food crops, lignocellulosic biomass is one of the most promising feedstocks for producing biofuels through fermentation processes. Among lignocellulose choices, poplar wood is appealing because of high energy potential, above-average carbon mitigation potential, fast growth, and high yields. Lignocellulose structural features limit accessibility of enzymes or microorganisms. To overcome these limitations, pretreatment is required. Among several choices of pretreatment, lime pretreatment is preferred because lime is the cheapest alkali, safest to handle, easy to recover, and compatible with oxidants. The main effect of lime pretreatment is to degrade lignin, which occurs with good carbohydrate preservation and is enhanced with oxidants. Among several choices of oxidant, oxygen and air are preferred because of low cost and widespread availability. This study systematically assesses the effects of lime pretreatment on poplar wood using four different modes: long-term oxidative, long-term non-oxidative, short-term constant pressure, and short-term varying pressure. Long-term pretreatments use temperatures between 25 and 65° C, air if oxidant is used, and last several weeks. Short-term pretreatments use temperatures between 110 and 180° C, pressurized oxygen, and last several minutes to hours. Pretreatment was assessed on the basis of 3-day enzymatic digestibility using enzyme loadings of 15 FPU/g glucan in raw biomass. The results were used to recommend pretreatment conditions based on highest overall yield of glucan (after combined pretreatment and enzymatic hydrolysis) for each pretreatment mode. For each pretreatment mode, kinetic models for delignification and carbohydrates degradation were obtained and used to determine the conditions (temperature, pressure, and time) that maximize glucan preservation subjected to a target lignin yield. This study led to conclude that the most robust, and selective mode of lime pretreatment is varying pressure.
4

The enhancing effect of pyrite on the kinetics of ferrous iron oxidation by dissolved oxygen

Littlejohn, Patrick Oliver Leahy 05 1900 (has links)
The oxidation of ferrous in acidic sulfate media by dissolved oxygen is an important reaction in any sulfide mineral leach process that uses ferric as a surrogate oxidant. Ferric is reduced as it oxidizes metal sulfides, and the resulting ferrous is re-oxidized by dissolved oxygen. The oxidation of ferrous to ferric by dissolved oxygen is quite slow outside of elevated pressure-temperature autoclaves. However, pyrite in solution has been found to have a catalytic effect on the reaction, speeding it up significantly. This effect is particularly significant in the context of the Galvanox™ acidic sulphate atmospheric leach process. To quantify the kinetics of this reaction and the effect of pyrite, tests were run in an atmospheric batch reactor with constant tracking of pH and redox potential. The kinetics of this reaction were quantified with respect to primary variables such as acidity, pyrite pulp density, temperature, and total iron concentration. Secondary factors such as copper concentration, gas liquid mixing rate and the source of pyrite mineral were also considered. Redox potential is a logarithmic function of the ratio of the activity of free ferric to free ferrous and is complicated by speciation within the Fe(III)-Fe(II)-H₂SO₄-H₂O system. Correlating redox potential data with extent of reaction was achieved by using permanganate redox titration and the isokinetic technique to link redox potential data directly to the fraction of ferrous reacted. This technique is effective over the potential range of interest – 360 to 510 mV vs Ag/AgCl. Under these conditions the leaching rate of pyrite is appreciable, so the rate of pyrite dissolution was predicted with the shrinking sphere model developed by Bouffard et al. Ferrous oxidation in solution was simulated with an adjusted version of the model of Dreisinger and Peters, which also accounts for the catalytic effect of dissolved copper. Oxygen solubility was predicted using the model of Tromans. Experimental data show a clear enhancing effect of pyrite on ferrous oxidation. A mathematical model of this effect applicable to the conditions of Galvanox™ leaching is presented.
5

Kinetic Modeling of Pyruvate Recycling Pathways in Pancreatic β-Cells.

Rahul, Rahul 17 September 2012 (has links)
A variety of signaling mechanisms are employed to maintain healthy levels of glucose in the blood stream. The hormone insulin is one of the primary regulators of glucose homeostasis. Insulin, which activates glucose uptake, is released from pancreatic beta-cells in a bi-phasic manner. The first phase is triggered by increased ATP levels in the cell. The second release phase is triggered by the so-called amplifying pathway, which has not been fully characterized. Recent experimental evidence indicates that pyruvate-recycling pathways are key components of the amplifying pathway. The fuel intermediates from these pathways may be the signaling factors that couple insulin-release to glucose availability. The co-factor nicotinamide adenine dinucleotide phosphate (NADPH) has been identified as a putative coupling factor. In this work we develop a kinetic model for the tricarboxylic acid cycle and pyruvate recycling pathways, building on the previous modeling efforts of Westermark et al. and Yugi and Tomita. We successfully validated the model against recent experimental observations. Analysis of the model provides predictions of the flux distributions in the pyruvate recycling pathways. Moreover, model simulations provides hypotheses to guide further experimental investigation, and suggest potential drug targets for treatment of type 2 diabetes.
6

The enhancing effect of pyrite on the kinetics of ferrous iron oxidation by dissolved oxygen

Littlejohn, Patrick Oliver Leahy 05 1900 (has links)
The oxidation of ferrous in acidic sulfate media by dissolved oxygen is an important reaction in any sulfide mineral leach process that uses ferric as a surrogate oxidant. Ferric is reduced as it oxidizes metal sulfides, and the resulting ferrous is re-oxidized by dissolved oxygen. The oxidation of ferrous to ferric by dissolved oxygen is quite slow outside of elevated pressure-temperature autoclaves. However, pyrite in solution has been found to have a catalytic effect on the reaction, speeding it up significantly. This effect is particularly significant in the context of the Galvanox™ acidic sulphate atmospheric leach process. To quantify the kinetics of this reaction and the effect of pyrite, tests were run in an atmospheric batch reactor with constant tracking of pH and redox potential. The kinetics of this reaction were quantified with respect to primary variables such as acidity, pyrite pulp density, temperature, and total iron concentration. Secondary factors such as copper concentration, gas liquid mixing rate and the source of pyrite mineral were also considered. Redox potential is a logarithmic function of the ratio of the activity of free ferric to free ferrous and is complicated by speciation within the Fe(III)-Fe(II)-H₂SO₄-H₂O system. Correlating redox potential data with extent of reaction was achieved by using permanganate redox titration and the isokinetic technique to link redox potential data directly to the fraction of ferrous reacted. This technique is effective over the potential range of interest – 360 to 510 mV vs Ag/AgCl. Under these conditions the leaching rate of pyrite is appreciable, so the rate of pyrite dissolution was predicted with the shrinking sphere model developed by Bouffard et al. Ferrous oxidation in solution was simulated with an adjusted version of the model of Dreisinger and Peters, which also accounts for the catalytic effect of dissolved copper. Oxygen solubility was predicted using the model of Tromans. Experimental data show a clear enhancing effect of pyrite on ferrous oxidation. A mathematical model of this effect applicable to the conditions of Galvanox™ leaching is presented. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
7

Single event kinetic modeling of the hydrocracking of paraffins

Kumar, Hans 15 November 2004 (has links)
A mechanistic kinetic model for the hydrocracking of paraffins based on the single-event kinetics approach has been studied. Several elements of the model have been improved and the parameters of the model have been estimated from experimental data on n-hexadecane hydrocracking. A detailed reaction network of elementary steps has been generated based on the carbenium ion chemistry using the Boolean relation matrices. A total of 49,636 elementary steps are involved in the hydrocracking of n-hexadecane. The rate coefficients of these elementary steps are expressed in terms of a limited number of single event rate coefficients. By virtue of the single event concept, the single event rate coefficients of a given type of elementary steps are independent of the structure of reactant and product. Given their fundamental nature they are also independent of the feedstock composition and the reactor configuration. There is no lumping of components involved in the generation of the reaction network. Partial lumping is introduced only at a later stage of the model development and the lumping is strictly based on the criterion that the individual components in any lump will be in thermodynamic equilibrium. This definition of lumping requires a total of 49 pure components/lumps in the kinetic model for the hydrocracking of n-hexadecane. The "global" rate of reaction of a lump to another lump is expressed using lumping coefficients which account for the transformation of all the components of one lump into the components of another lump through to a given type of elementary steps. The rate expressions thus formulated are inserted into a one-dimensional, three-phase plug flow reactor model. Experimental data have been collected for the hydrocracking of n-hexadecane. The model parameters are estimated by constrained optimization using sequential quadratic programming by minimizing the sum of squares of residuals between experimental and model predicted product profiles. The optimized parameters are finally used for the reactor simulation to study the effect of different process variables on the conversion and product distribution of n-hexadecane hydrocracking. The model is also used to predict the product distribution for the hydrocracking of a heavy paraffinic mixture consisting of C9 to C33 normal paraffins.
8

Ethylbenzene dehydrogenation into styrene: kinetic modeling and reactor simulation

Lee, Won Jae 25 April 2007 (has links)
A fundamental kinetic model based upon the Hougen-Watson formalism was derived as a basis not only for a better understanding of the reaction behavior but also for the design and simulation of industrial reactors. Kinetic experiments were carried out using a commercial potassium-promoted iron catalyst in a tubular reactor under atmospheric pressure. Typical reaction conditions were temperature = 620oC, steam to ethylbenzene mole ratio = 11, and partial pressure of N2 diluent = 0.432 bar. Experimental data were obtained for different operating conditions, i.e., temperature, feed molar ratio of steam to ethylbenzene, styrene to ethylbenzene, and hydrogen to ethylbenzene and space time. The effluent of the reactor was analyzed on-line using two GCs. Kinetic experiments for the formation of minor by-products, i.e. phenylacetylene, α-methylstyrene, β-methylstyrene, etc, were conducted as well. The reaction conditions were: temperature = 600oC ~ 640oC, a molar ratio of steam to ethylbenzene = 6.5, and partial pressure of N2 diluent = 0.43 bar and 0.64 bar. The products were analyzed by off-line GC. The mathematical model developed for the ethylbenzene dehydrogenation consists of nonlinear simultaneous differential equations in multiple dependent variables. The parameters were estimated from the minimization of the multiresponse objective function which was performed by means of the Marquardt algorithm. All the estimated parameters satisfied the statistical tests and physicochemical criteria. The kinetic model yielded an excellent fit of the experimental data. The intrinsic kinetic parameters were used with the heterogeneous fixed bed reactor model which is explicitly accounting for the diffusional limitations inside the porous catalyst. Multi-bed industrial adiabatic reactors with axial flow and radial flow were simulated and the effect of the operating conditions on the reactor performance was investigated. The dynamic equilibrium coke content was calculated using detailed kinetic model for coke formation and gasification, which was coupled to the kinetic model for the main reactions. The calculation of the dynamic equilibrium coke content provided a crucial guideline for the selection of the steam to ethylbenzene ratio leading to optimum operating conditions.
9

In-situ monitoring of the mechanical properties during the photopolymerization of acrylate resins using particle tracking microrheology

Slopek, Ryan Patrick 25 March 2008 (has links)
The fundamentals of the photopolymerization process are not well understood. As a result, issues affecting the cure speed and overall quality of the final product (shape, size, and surface finish) of photopolymerization impose significant limitations on applications that require fast processing and high spatial resolution. To address this issue, microrheology was employed to perform in-situ monitoring of the liquid-to-gel transition during free-radical photopolymerization. Photosensitive acrylate and hydrogel resins were exposed to ultraviolet light, while the Brownian motion of micrometer sized, inert fluorescent tracer particles was tracked via optical videomicroscopy. Statistical analysis of particle motion yielded the rheological properties of the embedding medium as a function of time and location, thereby relating UV exposure to the progress of polymerization and gelation. The microrheological setup enabled a detailed study of three-dimensional gelation profiles; other experimental parameters that were initially varied include photoinitiator concentration, monomer composition, and light intensity. Significant changes in gelation time were observed with varying UV intensity and UV penetration depth into the sample. In addition, oxygen inhibition was found to significantly impact the cure speed of monomeric resins. The preliminary results were used to test the accuracy of the energy threshold model, which is often used to empirically predict the outcome of photopolymerization reactions. By using lithographic masks to generate well-defined UV illumination patterns with characteristic dimensions of tens of micrometers, it could be shown unambiguously that the diffusion of oxygen, an inhibitor, plays a critical role in the polymerization reaction. The experiments are in excellent agreement with a simple two-step model of oxygen consumption followed by polymerization. The use of high-speed electronic shutters in the UV light path enabled us to control the illumination time of the samples with high precision. Microrheological analysis could be used to reconstruct three-dimensional profiles of partially polymerized samples. Traditional photorheometry is not capable of resolving the evolution of sample rheology with such spatial resolution. In addition, experiments with pulsed illumination were used to quantify the role of dark reactions due to residual free radicals after termination of UV illumination.
10

Etude de mécanismes cinétiques et des propriétés explosives des systèmes hydrogène-protoxyde d'azote et silane-protoxyde d'azote : application à la sécurité industrielle / Study of kinetic mechanisms and explosives properties of the hydrogen-nitrous oxide and silane-nitrous oxide systems : application to the industrial safety

Mével, Rémy 26 November 2009 (has links)
La présente étude s’inscrit dans le cadre d’une évaluation des risques liés d’une part au stockage des déchets nucléaires et d’autre part à la production des semi-conducteurs. L’ojectif est d’obtenir des paramètres fondamentaux sur les propriétés explosives des mélanges hydrogène-protoxyde d’azote et silane-protoxyde d’azote. Pour le système hydrogène-protoxyde d’azote, les temps caractéristiques de réaction derrière une onde de choc réfléchie, les vitesses fondamentales de flamme et les largeurs des cellules de détonation ont été mesurées expérimentalement sur une large gamme de composition et de condition. Un mécanisme cinétique détaillé a été développé et validé sur les données de la présente étude et de la littérature. Des mécanismes cinétiques réduits ont été obtenus par une méthode de réduction automatique et inclus dans un code de simulation numérique bi-dimensionnelle d’onde de détonation. Pour le système silane-protoxyde d’azote, l’évolution temporelle des atomes d’oxygène derrière une onde de choc réfléchie et les vitesses fondamentales de flammes ont été étudiées expérimentalement. Une étude préliminaire d’analyse des produits solides de combustion formés en bombe sphérique a également été réalisée. Un mécanisme cinétique réduit de la littérature a été modifié afin de reproduire les profils des atomes d’oxygène. / The present study is part of a risk assessment related, on one hand, to the storage of nuclear wastes, and on the other hand, to the production of semi-conductors. The aim is to obtain fondamental parameters on the explosive properties of hydrogen-nitrous oxide and silane-nitrous oxide mixtures. For the hydrogen-nitrous oxide system, caracteristic times of reaction behind reflected shock waves, laminar flame speeds and detonation cell widths were measured experimentally over a wide range of composition and condition. A detailed kinetic mechanism has been developed and validated against the data of the present study and of literature. Reduced kinetic mechanisms have been obtained using an automatic method of reduction and included in a two-dimensional numerical simulation code of detonation wave. For the silane-nitrous oxide system, the time profiles of oxygen atoms behind reflected shock waves and laminar flame speeds were studied experimentally. A preliminary analytical study of solid combustion products formed in a spherical bomb was also performed. A reduced kinetic mechanism of the literature was modified to reproduce the profiles of oxygen atoms.

Page generated in 0.1225 seconds