• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de mécanismes cinétiques et des propriétés explosives des systèmes hydrogène-protoxyde d'azote et silane-protoxyde d'azote : application à la sécurité industrielle

Mével, Rémy 26 November 2009 (has links) (PDF)
La présente étude s'inscrit dans le cadre d'une évaluation des risques liés d'une part au stockage des déchets nucléaires et d'autre part à la production des semi-conducteurs. L'ojectif est d'obtenir des paramètres fondamentaux sur les propriétés explosives des mélanges hydrogène-protoxyde d'azote et silane-protoxyde d'azote. Pour le système hydrogène-protoxyde d'azote, les temps caractéristiques de réaction derrière une onde de choc réfléchie, les vitesses fondamentales de flamme et les largeurs des cellules de détonation ont été mesurées expérimentalement sur une large gamme de composition et de condition. Un mécanisme cinétique détaillé a été développé et validé sur les données de la présente étude et de la littérature. Des mécanismes cinétiques réduits ont été obtenus par une méthode de réduction automatique et inclus dans un code de simulation numérique bi-dimensionnelle d'onde de détonation. Pour le système silane-protoxyde d'azote, l'évolution temporelle des atomes d'oxygène derrière une onde de choc réfléchie et les vitesses fondamentales de flammes ont été étudiées expérimentalement. Une étude préliminaire d'analyse des produits solides de combustion formés en bombe sphérique a également été réalisée. Un mécanisme cinétique réduit de la littérature a été modifié afin de reproduire les profils des atomes d'oxygène.
2

Modélisation 0D de la combustion des carburants alternatifs dans les moteurs à allumage commandé

Bougrine, Sabre 22 June 2012 (has links) (PDF)
Pour satisfaire les exigences environnementales et d'agrément de conduite, le moteur automobile a évolué en une vingtaine d'années en un système très complexe combinant de nombreux composants de haute technologie avec des stratégies de contrôle très élaborées. L'optimisation et le contrôle de ce système sont alors devenus de véritables challenges pour les constructeurs automobiles. Ces derniers points sont aujourd'hui d'autant plus complexes que le contexte actuel de raréfaction des ressources impose de plus en plus le couplage ou le remplacement des carburants conventionnels par des carburants alternatifs tels que l'éthanol, le gaz naturel ou encore l'hydrogène. Ces nouveaux carburants présentent, en plus de leur intérêt économique, un certain nombre de propriétés physico-chimiques favorisant un meilleur rendement du moteur ainsi que la réduction des gaz à effet de serre. L'élaboration de ces nouveaux moteurs est finalement rendue possible par l'utilisation de dispositifs physiques et numériques de plus en plus sophistiqués. Dans ce contexte, les outils de simulation système destinés aux groupes motopropulseurs se sont démocratisés et peuvent aujourd'hui être utilisés à toutes les étapes de développement des moteurs, du choix de l'architecture au développement des stratégies de contrôle et à la calibration. Cependant, l'efficacité de tels outils demande encore à être améliorée afin de fournir un haut niveau de prédictivité couplé à un temps de calcul proche du temps réel. Les travaux réalisés lors de cette thèse ont visé à contribuer au développement du modèle de combustion 0-dimensionnel CFM1D (Coherent Flame Model) afin d'améliorer la prédiction du dégagement d'énergie, des polluants et des phénomènes d'auto-inammation (AI) dans les moteurs à allumage commandé lorsque des variations de la composition du carburant sont considérées. Le formalisme CFM distingue deux zones : les gaz frais et les gaz brûlés qui sont séparés par un front de flamme et qui sont entièrement décrits par leur masse, température et composition. Dans ce formalisme, le taux de consommation des espèces est directement lié aux processus de combustion et de post-oxydation assujettis aux mécanismes de chimie et de turbulence. Dans la version initiale du CFM1D, ces mécanismes sont représentés par des approches simples pouvant souffrir d'un manque de prédictivité. Ainsi, la prédiction de la formation de polluants peut être limitée par les chimies simples ou réduites la décrivant. Ces dernières sont en effet généralement définies dans des domaines de validité restreints en température, pression et composition. De la même manière, le calcul de la vitesse de flamme laminaire, de l'étirement de la flamme ou encore des éventuels délais d'auto-inammation intervenant dans l'évaluation du dégagement d'énergie met en jeux des corrélations phénoménologiques initialement développées sur un nombre limités de points de validation. Toutes ces limitations peuvent finalement entraîner une mauvaise réaction du modèle de combustion à des variations thermodynamiques ou de compositions et ont donc nécessite un certain nombre d'améliorations présentées dans ce manuscrit. L'originalité des développements réside dans l'intégration de chimie complexe dans le modèle CFM1D en utilisant des méthodes inspirées de récents travaux de CFD (Computational Fluid Dynamics) 3D.
3

Etude de l'inflammabilité d'un nuage de particules d'aluminium partiellement oxydées

Baudry, Guillaume 07 May 2007 (has links) (PDF)
Les risques importants d'inflammation de "nuages de poussières" en milieu industriel ainsi que l'entrée en vigueur de nouvelles normes (telles que les directives ATEX) font qu'il est aujourd'hui essentiel, pour les exploitants, de quantifier le danger représenté par leurs activités. Cette étude traite le cas des poussières d'aluminium et plus particulièrement l'influence de leur état d'oxydation sur les seuils d'amorçage par arc électrique. Un dispositif d'inflammation comprenant un système original de génération d'arc électrique à puissance constante a été mis au point spécifiquement pour ce travail. Une méthode statistique de traitement a été adaptée et utilisée afin d'évaluer des énergies d'inflammation conduisant à une probabilité d'amorçage de 50%. Une procédure d'oxydation contrôlée des poudres d'aluminium, ainsi que leur caractérisation physico chimique, est présentée. La croissance des seuils d'inflammation avec le taux d'oxydation des produits testés a ainsi pu être mise en évidence. Dans un second temps, des mesures de vitesse apparente de flamme ainsi que des relevés de pression dans les premiers instants de l'explosion ont été réalisés. Ces mesures expérimentales seront confrontées aux résultats obtenus à l'aide d'un modèle numérique permettant de relier l'évolution de la pression dans la chambre à la vitesse de propagation de la flamme.
4

Etude de mécanismes cinétiques et des propriétés explosives des systèmes hydrogène-protoxyde d'azote et silane-protoxyde d'azote : application à la sécurité industrielle / Study of kinetic mechanisms and explosives properties of the hydrogen-nitrous oxide and silane-nitrous oxide systems : application to the industrial safety

Mével, Rémy 26 November 2009 (has links)
La présente étude s’inscrit dans le cadre d’une évaluation des risques liés d’une part au stockage des déchets nucléaires et d’autre part à la production des semi-conducteurs. L’ojectif est d’obtenir des paramètres fondamentaux sur les propriétés explosives des mélanges hydrogène-protoxyde d’azote et silane-protoxyde d’azote. Pour le système hydrogène-protoxyde d’azote, les temps caractéristiques de réaction derrière une onde de choc réfléchie, les vitesses fondamentales de flamme et les largeurs des cellules de détonation ont été mesurées expérimentalement sur une large gamme de composition et de condition. Un mécanisme cinétique détaillé a été développé et validé sur les données de la présente étude et de la littérature. Des mécanismes cinétiques réduits ont été obtenus par une méthode de réduction automatique et inclus dans un code de simulation numérique bi-dimensionnelle d’onde de détonation. Pour le système silane-protoxyde d’azote, l’évolution temporelle des atomes d’oxygène derrière une onde de choc réfléchie et les vitesses fondamentales de flammes ont été étudiées expérimentalement. Une étude préliminaire d’analyse des produits solides de combustion formés en bombe sphérique a également été réalisée. Un mécanisme cinétique réduit de la littérature a été modifié afin de reproduire les profils des atomes d’oxygène. / The present study is part of a risk assessment related, on one hand, to the storage of nuclear wastes, and on the other hand, to the production of semi-conductors. The aim is to obtain fondamental parameters on the explosive properties of hydrogen-nitrous oxide and silane-nitrous oxide mixtures. For the hydrogen-nitrous oxide system, caracteristic times of reaction behind reflected shock waves, laminar flame speeds and detonation cell widths were measured experimentally over a wide range of composition and condition. A detailed kinetic mechanism has been developed and validated against the data of the present study and of literature. Reduced kinetic mechanisms have been obtained using an automatic method of reduction and included in a two-dimensional numerical simulation code of detonation wave. For the silane-nitrous oxide system, the time profiles of oxygen atoms behind reflected shock waves and laminar flame speeds were studied experimentally. A preliminary analytical study of solid combustion products formed in a spherical bomb was also performed. A reduced kinetic mechanism of the literature was modified to reproduce the profiles of oxygen atoms.
5

Modélisation 0D de la combustion des carburants alternatifs dans les moteurs à allumage commandé / 0-dimensional modeling of the combustion of alternative fuels in spark ignition engines

Bougrine, Sabre 22 June 2012 (has links)
Pour satisfaire les exigences environnementales et d'agrément de conduite, le moteur automobile a évolué en une vingtaine d'années en un système très complexe combinant de nombreux composants de haute technologie avec des stratégies de contrôle très élaborées. L’optimisation et le contrôle de ce système sont alors devenus de véritables challenges pour les constructeurs automobiles. Ces derniers points sont aujourd'hui d'autant plus complexes que le contexte actuel de raréfaction des ressources impose de plus en plus le couplage ou le remplacement des carburants conventionnels par des carburants alternatifs tels que l’éthanol, le gaz naturel ou encore l’hydrogène. Ces nouveaux carburants présentent, en plus de leur intérêt économique, un certain nombre de propriétés physico-chimiques favorisant un meilleur rendement du moteur ainsi que la réduction des gaz à effet de serre. L’élaboration de ces nouveaux moteurs est finalement rendue possible par l'utilisation de dispositifs physiques et numériques de plus en plus sophistiqués. Dans ce contexte, les outils de simulation système destinés aux groupes motopropulseurs se sont démocratisés et peuvent aujourd'hui être utilisés à toutes les étapes de développement des moteurs, du choix de l’architecture au développement des stratégies de contrôle et à la calibration. Cependant, l'efficacité de tels outils demande encore à être améliorée afin de fournir un haut niveau de prédictivité couplé à un temps de calcul proche du temps réel. Les travaux réalisés lors de cette thèse ont visé à contribuer au développement du modèle de combustion 0-dimensionnel CFM1D (Coherent Flame Model) afin d’améliorer la prédiction du dégagement d'énergie, des polluants et des phénomènes d'auto-inammation (AI) dans les moteurs à allumage commandé lorsque des variations de la composition du carburant sont considérées. Le formalisme CFM distingue deux zones : les gaz frais et les gaz brûlés qui sont séparés par un front de flamme et qui sont entièrement décrits par leur masse, température et composition. Dans ce formalisme, le taux de consommation des espèces est directement lié aux processus de combustion et de post-oxydation assujettis aux mécanismes de chimie et de turbulence. Dans la version initiale du CFM1D, ces mécanismes sont représentés par des approches simples pouvant souffrir d'un manque de prédictivité. Ainsi, la prédiction de la formation de polluants peut être limitée par les chimies simples ou réduites la décrivant. Ces dernières sont en effet généralement définies dans des domaines de validité restreints en température, pression et composition. De la même manière, le calcul de la vitesse de flamme laminaire, de l'étirement de la flamme ou encore des éventuels délais d'auto-inammation intervenant dans l'évaluation du dégagement d'énergie met en jeux des corrélations phénoménologiques initialement développées sur un nombre limités de points de validation. Toutes ces limitations peuvent finalement entraîner une mauvaise réaction du modèle de combustion à des variations thermodynamiques ou de compositions et ont donc nécessite un certain nombre d'améliorations présentées dans ce manuscrit. L'originalité des développements réside dans l'intégration de chimie complexe dans le modèle CFM1D en utilisant des méthodes inspirées de récents travaux de CFD (Computational Fluid Dynamics) 3D. / A promising way to reduce green house gases emissions of spark ignition (SI) engines is to burn alternative fuels like bio-mass-derived products, hydrogen or compressed natural gas. However, their use strongly impacts combustion processes in terms of burning velocity and emissions. Specific engine architectures as well as dedicated control strategies should then be optimized to take advantage of these fuels. Such developments are today increasingly performed using complete engine simulators running in times close to the real time and thus requiring very CPU efficient models. For this purpose, 0-dimensional models are commonly used to describe combustion processes in the cylinders. These models are expected to reproduce the engine response for all possible fuels, which is not an obvious task regarding the mentioned CPU constraints. Works performed in this thesis aimed at developing the 0-dimensional combustion model CFM1D (Coherent Flame Model) to improve the prediction of heat release, pollutants emissions and auto-ignition phenomena in SI engines when fuel composition variations are considered. The CFM formalism distinguishes two zones: the fresh and the burnt gases, which are separated by a flame front and are both described by their temperature, mass and composition. In this formalism, the rate of consumption of species is directly linked to the combustion and post-oxidation processes highly dependent on chemistry and turbulence mechanisms. In the original version of CFM1D, these mechanisms are represented by simple approaches which can suffer from a lack of predictivity. The prediction of pollutant formation can therefore be limited by the simple or reduced chemistries used to describe kinetics in the chamber. These latter are indeed defined in very restrictive validity domains in terms of temperature, pressure and composition. In the same way, the flame velocity, wrinkling or potential auto-ignition delays stepping in the heat release computation are defined by phenomenological correlations initially developed under a limited number of validation points. All these limitations can finally lead to a wrong behavior of the combustion model to thermodynamic and compositions variations and therefore required a number of improvements presented in this manuscript. The originality of the model derives from the fact it is based on the integration of complex chemistry in CFM1D using methods inspired from recent 3D (Computational Fluid Dynamics) CFD works.
6

Etude expérimentale de la dynamique des flammes de prémélange isooctane/air en expansion laminaire et turbulente fortement diluées / Experimental study of the dynamic of expanding laminar and turbulent premixed isooctane/air flames under high dilution

Endouard, Charles 10 November 2016 (has links)
Depuis plusieurs années, les constructeurs automobiles suivent la voie du « downsizing » pour le développement des moteurs à allumage commandé. Ce procédé basé sur la réduction des cylindrées moteur combinée à la suralimentation a déjà fait ses preuves quant à son intérêt dans l’augmentation du rendement et la réduction des émissions polluantes des moteurs à essence. Les nouvelles conditions thermodynamiques, de turbulence et de dilution de ces moteurs engendrant de nouvelles possibilités de dilution dans les mélanges air/carburant, elles amènent également de nouvelles problématiques quant aux combustions anormales observées et l’apparition d’importantes variabilités cycliques. Ces travaux de thèse s’insèrent dans l’objectif de compréhension du comportement des flammes de prémélange d’isooctane/air en expansion dans des conditions représentatives d’un moteur « downsizé ». Leur étude a dans un premier temps été réalisée dans des conditions laminaires afin d’extraire les vitesses de flammes et longueurs de Markstein associées aux différents mélanges réactifs, et notamment sous forte dilution. Des corrélations ont alors été développées pour répondre aux besoins des modèles de simulation. Un nouveau dispositif de diagnostic optique a ensuite été employé pour améliorer la visualisation des flammes turbulentes en expansion. Une corrélation de coefficient correctif est ici développée pour remédier à la surestimation de vitesse engendrée par une visualisation Schlieren de ces flammes turbulentes. Une étude approfondie de l’influence des conditions thermodynamiques initiales, de la turbulence, ainsi que des caractéristiques diffusives du mélange air/carburant a par ailleurs été conduite afin d’isoler l’effet de chacun de ces paramètres sur le développement et la propagation de la flamme turbulente. Enfin l’effet d’une évolution simultanée des conditions thermodynamiques initiales similaire à celle d’une compression moteur a été étudié pour mieux appréhender les changements de comportement des flammes turbulentes dans des conditions plus représentatives du moteur à allumage commandé. / For several years, “downsizing” is used by car manufacturers to develop new spark ignition engines. This method based on the reduction of engine size combined with an increase of intake pressure (turbocharger) is well known to reduce pollutant emissions and increase efficiency. New thermodynamic, turbulent and dilution conditions could be used with these new engines but they can bring new issues like unusual combustion or cyclic variability. This thesis took place to improve the understanding of premixed expanding isooctane/air flames behavior under downsized engine-like conditions. As a first step, this work is conducted under laminar conditions to extract laminar burning velocities and Markstein lengths of the different mixtures, especially under high dilution. New correlations are then developed to answer the needs of numerical models. A new optical dispositive is then used to improve the visualization of turbulent expanding flames. A corrective coefficient correlation is proposed to avoid the overestimated values of turbulent burning speed generated by Schlieren visualization with such turbulent flames. A deep survey of starting conditions (temperature, pressure, turbulence, dissipative characteristics of air/fuel mixtures) influence is done to investigate the effect of each parameters on the development and the propagation of the turbulent flame. Finally, the effect of a coupled rise of initial temperature and pressure, similar to an engine compression, is studied to better understand the changes of flame behavior under more realistic spark-ignition engine conditions.
7

Étude experimentale et theorique des vitesses de flammes laminaires d'hydrocarbures / Experimental and theoretical study of laminar burning velocities of hydrocarbons

Dirrenberger, Patricia 20 March 2014 (has links)
La vitesse de flamme adiabatique est un paramètre clé dans l'étude de la combustion d'hydrocarbures. Elle joue en effet un rôle essentiel dans le domaine de la combustion, dans la mesure où elle est utilisée pour valider des modèles numériques, pour construire des brûleurs, ou encore pour prédire d'éventuels retours de flamme ou souffles de la flamme. Le but de cette thèse a été d'étudier les vitesses de flammes laminaires d'un grand nombre d'hydrocarbures présents dans les gaz naturels, les essences et les gazoles. Ce travail comprend une partie expérimentale et une partie de modélisation. La partie expérimentale a permis d'enrichir les bases de données de la littérature pour différentes compositions de mélanges air/hydrocarbures. Les travaux ont été effectués sur un nouveau montage mis au point au LRGP (Laboratoire Réactions et Génie des Procédés) pour la mesure de vitesses de flammes laminaires par la méthode du flux de chaleur à l'aide d'un brûleur adiabatique à flamme plate. Cette méthode est basée sur l'équilibre des pertes thermiques nécessaires pour stabiliser la flamme par le flux de chaleur convectif allant de la surface du brûleur vers le front de flamme. Le brûleur est constitué d'une plaque perforée montée sur une chambre de mélange des gaz et la mesure de la distribution radiale de la température est réalisée grâce à une série de thermocouples. Ce montage a d'abord été utilisé à pression atmosphérique et plusieurs températures pour la mesure de vitesses de flammes de composés gazeux (alcanes, alcènes, méthane enrichi en hydrogène ou oxygène, gaz naturels, mélanges méthane-éthane et méthane-propane) et de composés liquides (alcanes, éthanol, essences commerciale et modèle additionnées ou non d'éthanol, alkylcyclohexanes, alkylbenzènes). Le montage a ensuite été placé dans une enceinte pour pouvoir travailler avec des pressions pouvant théoriquement aller jusqu'à 10 atm. Les vitesses de flammes de deux composés ont été étudiées à température ambiante et à haute pression : un composé gazeux, le méthane, jusqu'à une pression de 6 atm et un composé liquide, le n-pentane, jusqu'à une pression de 4 atm. Une étude de modélisation a complété ce travail par l'utilisation de modèles cinétiques détaillés pour la combustion des composés étudiés. Ces modèles ont été testés par la simulation des résultats expérimentaux précédemment obtenus, dans des conditions de richesse, température et pression variées / The laminar burning velocity is a key parameter in the combustion of hydrocarbons study. It plays an essential role in the combustion science area since it is used for the validation of numerical models, the design of burners or to predict potential flashback or blow off of the flame. The goal of the thesis was the study of laminar burning velocities of many hydrocarbons found in natural gases, gasolines or diesel fuels. This work includes an experimental part and a modeling part. The experimental part allowed the implementation of the literature database for different air/hydrocarbons mixtures. The experiments were performed with a new apparatus developed at LRGP (Laboratoire Réactions et Génie des Procédés) for the measurement of laminar burning velocities by the heat flux method thanks to a flat flame adiabatic burner. This method is based on balancing of the heat loss required for the flame stabilization by the convective heat flux from the burner surface to the flame front. The burner head is a thick perforated plate included in a plenum mixing chamber and the measurement of the radial distribution of the temperature is performed with a thermocouples series. This apparatus was first used at atmospheric pressure and several temperatures to measure laminar burning velocities of gaseous compounds (alkanes, alkenes, hydrogen-enriched or oxygen-enriched methane, natural gases, methane-ethane and methane-propane mixtures) and liquid compounds (alkanes, ethanol, commercial gasoline and model fuel with addition of ethanol or not, alkylcyclohexanes, alkylbenzènes). The apparatus was then placed in a chamber in order to work under pressures theoretically up to 10 atm. Laminar burning velocities of two compounds were studied at room temperature and high pressure : a gaseous compound, methane, for pressures up to 6 atm and a liquid compound, n-pentane, for pressures up to 4 atm. A modelling study completed this work by using detailed kinetic models for the combustion of studied compounds. These models were tested by the simulation of experimental results previously obtained, in various equivalence ratio, temperature and pressure conditions
8

Thermal and hydrodynamic effects of nanosecond discharges in air and application to plasma-assisted combustion / Effets thermiques et hydrodynamiques des décharges nanosecondes et application à la combustion assistée par plasma

Xu, Da 19 December 2013 (has links)
Les décharges Nanosecondes Répétitives Pulsées (NRP) sont de plus en plus utilisées dans diverses applications, en particulier dans la combustion assistée par plasma et le contrôle d'écoulement aérodynamique. Tout d'abord, nous étudions les effets thermiques et hydrodynamiques d'une décharge NRP en utilisant des mesures de Schlieren rapide quantitatives et des analyses numériques dans l'air à la pression atmosphérique à 300 et 1000 K. Les images Schlieren résolues en temps montrent l'expansion du canal de gaz chauffé à partir de 50 ns après la décharge et la propagation d'ondes de choc à partir d'environs 500 ns. L'onde de choc change de forme cylindrique à sphérique après 3 µs. Nous analysons des images Schlieren enregistrées à partir de 50 nanosecondes à 3 microsecondes après la décharge. Des profils de densité de gaz simulés en coordonnées cylindriques 1-D sont utilisés pour reconstruire des images Schlieren numériques pour la comparaison avec les résultats expérimentaux. Nous proposons une méthode originale pour déterminer la température du gaz initial et la fraction de l'énergie transférée dans le chauffage rapide, en utilisant une comparaison des profils de contraste d'images obtenues à partir d'images Schlieren expérimentales et numériques. Les résultats montrent qu'une fraction importante de l'énergie électrique est convertie en chauffage du gaz en quelques dizaines de nanosecondes. Les valeurs vont de 25 % pour un champ électrique réduit de 164 Td dans l'air à 300 K à environ 75 % à 270 Td dans l'air à 1000 K. Celles-ci reflètent les processus de chauffage rapide par quenching dissociatif de N2(B,C) par l'oxygène moléculaire. Deuxièmement, nous fournissons une base de données pour tester la modélisation cinétique de l'allumage pauvre de mélange par les décharges NRP. Le rayon d'allumage initial, le développement du noyau d'allumage à des pressions jusqu'à 10 bar sont caractérisées. Les comparaisons avec un allumeur classique montrent que de meilleurs résultats sont obtenus avec des décharges NRP en termes de vitesse de propagation de la flamme, en particulier à haute pression, où la vitesse de flamme augmente jusqu'à 20% à 10 bar en raison de l'augmentation de plissement du front de flamme induit par les décharges NRP. Enfin, nous étudions la réponse dynamique d'une flamme à l'actionnement par les décharges NRP dans un brûleur 12-kW. Les résultats montrent une réduction significative (75%) de la hauteur de décollement de flamme après l'application des décharges NRP. Le mécanisme en jeu est l'entrainement des radicaux OH et de la chaleur produite par la décharge vers la couche de cisaillement de gaz frais entrant. Cette étude ouvre ainsi de nouvelles perspectives vers le contrôle des instabilités de combustion. / Nanosecond repetitively pulsed (NRP) discharges are being increasingly used in various applications, in particular in plasma-assisted combustion and aerodynamic flow control. First, we studied the thermal and hydrodynamic effects of NRP discharges using quantitative Schlieren measurements and numerical analyses in atmospheric pressure air. The time resolved images show the expansion of the heated gas channel starting from as early as 50 ns after the discharge and the shock-wave propagation from about 500 ns. Gas density profiles simulated in 1-D cylindrical coordinates are used to reconstruct numerical Schlieren images for comparison with experimental ones. We propose an original method to determine the initial gas temperature and the fraction of energy transferred into fast gas heating, using a comparison of the contrast profiles obtained from experimental and numerical Schlieren images. The results show that a significant fraction of the electric energy is converted into gas heating within a few tens of ns. The values range from 25 % at a reduced electric field of 164 Td in air at 300 K to about 75 % at 270 Td in air preheated to 1000 K, which supports the fast heating processes via dissociative quenching of N2(B, C) by molecular oxygen. Second, we provide a database to test the kinetic modeling of lean mixture ignition by NRP discharges. We characterize the initial spark radius and the ignition kernel development at pressures up to 10 bar. Comparisons with a conventional igniter show that better results are obtained with NRP discharges in terms of flame propagation speed, especially at high pressure. The flame speed increases by up to 20 % at 10 bar due to the increased wrinkling of the flame front induced by NRP discharges. Finally, we investigate the dynamic response of a flame to actuation by NRP discharges in a 12-kW bluff-body stabilized burner. The results show a significant reduction in flame lift-off height, within 5 ms after applying the NRP discharges. The mechanism is attributed to the entrainment of the OH radicals and heat towards the shear layer of incoming fresh gases. This opens up new applications in the control of combustion instabilities.
9

Experimental investigation of laminar flame speeds of kerosene fuel and second generation biofuels in elevated conditions of pressure and preheat temperature / Etude expérimentale de la vitesse de flamme laminaire pour des carburants multi-composants de type kérosène et biocarburants de deuxième génération dans des conditions de pression de température élevées

Wu, Yi 21 July 2016 (has links)
La vitesse de flamme laminaire représente une grandeur physique clé à mesurer car elle permet d'obtenir des données fondamentales sur la réactivité, la diffusivité et l'exothermicité du carburant. Elle est également un des paramètres utilisés pour le développement et la validation des mécanismes réactionnels détaillés ainsi que pour la modélisation de la combustion turbulente. Bien que cette grandeur physique ait fait l'objet de nombreuses études expérimentales depuis plusieurs décennies, sa méconnaissance sur des carburants multi-composant dans des conditions haute-pression et haute-température similaires à celles existantes dans les chambres de combustion reste un sujet d'actualité pour les industriels des secteurs automobile et aéronautique. Au cours de cette thèse, un brûleur de configuration bec Bunsen fonctionnant avec un prémélange gazeux combustible/air a été conçu pour produire une flamme laminaire à pression élevée tout en permettant la mesure par voie optique de la vitesse de flamme laminaire de carburants multi-composant (kérosène, biocarburants de seconde génération...). La mesure est basée sur la détection du contour de flamme par diverses diagnostics optiques comme la chimiluminescence OH*, la PLIF-OH et la PLIF-acétone/aromatique. En premier lieu, les mélanges de carburants purs gazeux (CH4) ou liquide (acétone) avec de l'air ont été étudiés pour valider le brûleur expérimental et la méthodologie de mesure de la vitesse de flamme laminaire par voie optique. Les évolutions de la vitesse de flamme laminaire pour des carburants de type kérosène (composants purs, surrogate LUCHE et Jet A-1) en fonction de la pression, température de préchauffage et richesse ont été ensuite étudiées et comparées avec des simulations numériques utilisant un mécanisme réactionnel détaillé. La dernière partie de la thèse est consacrée à l'étude de l'influence des composés oxygénés présents dans un biocarburant de seconde génération de type d'essence sur la vitesse de flamme laminaire. Après avoir mesuré la vitesse de flamme laminaire de différentes molécules oxygénées, les effets d'addition de ces composés oxygénés dans le carburant ont été quantifiés / Laminar flame speed is one of the key parameters for understanding reactivity, diffusivity and exothermicity of fuels. It is also useful to validate both the kinetic chemical mechanisms as well as turbulent models. Although laminar flame speeds of many types of fuels have been investigated over many decades using various combustion methodologies, accurate measurements of laminar flame speeds of multicomponent liquid fuels in high-pressure and high-temperature conditions similar to the operating conditions encountered in aircraft/automobile combustion engines are still required. In this current study, a high-pressure combustion chamber was specifically developed to measure the laminar flame speed of multicomponent liquid fuels such as kerosene and second generation of biofuels. The architecture of the burner is based on a preheated premixed Bunsen flame burner operated in elevated pressure and temperature conditions. The optical diagnostics used to measure the laminar flame speed are based on the detection of the flame contour by using OH* chemiluminescence, OH- and acetone/aromatic- Planar laser induced fluorescence (PLIF). The laminar flame speed of gaseous CH4/air and acetone/air premixed laminar flames were first measured for validating the experimental setup and the measurement methodologies. Then, the laminar flame speeds of kerosene or surrogate fuels (neat kerosene compounds, LUCHE surrogate kerosene and Jet A-1) were investigated and compared with simulation results using detailed kinetic mechanisms over a large range of conditions including pressure, temperature and equivalence ratio. The last part of the thesis was devoted to study the effect of oxygenated compounds contained in the second generation of biofuels on the laminar flame speeds. After measuring the laminar flame speeds of various oxygenated components present in partially hydro-processed lignocellulosic biomass pyrolysis oils, the effect of these oxygenates on the flame speeds of these fuels were quantitatively investigated
10

Etude expérimentale des concentrations de suie et des vitesses dans une flamme de paroi verticale / Experimental study of the concentrations of soot and speeds in a flame of vertical wall

Valencia Correa, Andres 19 June 2017 (has links)
La propagation d’un incendie dans un espace clos s’explique par l’inflammation de matières combustibles. Un cas important est celui de la propagation d’une flamme sur une paroi verticale. En effet si la flamme progresse dans le même sens que l’écoulement (cas co-courant), la croissance est rapide. Dans ce cas, l’émission des vapeurs combustibles (pyrolyse) et le dégagement de la chaleur apportée par la combustion sont couplés par les flux convectés et rayonnés à la paroi. Ces flammes de paroi verticale sont pilotées par les forces de flottabilité, et se caractérisent par un régime de basse vitesse et avec une forte production de suie. Bien que de nombreux travaux aient été consacrés à l’étude des flammes de paroi verticale [1-3], peu d’entre eux ont été dédiés à l’étude de l’écoulement dans la couche limite proche de la paroi et à l’étude des zones de production de suie, lesquels sont des données nécessaires pour la validation des codes de calcul. Pour cela, des mesures simultanées de vitesse par PIV et de concentration de suie par LII ont été réalisées sur un brûleur gaz en configuration paroi-verticale. Dans un premier temps, ces mesures ont permis l’analyse de la forme, de la taille et de la concentration des zones de formation de suies (poches de suie) à différentes hauteurs dans la flamme. Ensuite, les champs 2D de vitesses moyennes (horizontales et verticales) ont été étudiés, ainsi que leurs fluctuations (densités de probabilité et écart-type). Une description de la couche limite réactive, à l’aide d’une échelle caractéristique obtenue avec des mesures de vitesse plus résolues spatialement (PIV « zoomé »), a également été réalisée. Finalement, les mesures de LII et PIV couplées ont permis d’étudier l’influence du champ de vitesse sur la distribution des suies dans la flamme, ainsi que le transport et le flux turbulent de la fraction volumique de suie dans la couche limite réactive. / The fire growth and spread on a confined space depends on the inflammation and combustion of combustible materials. An important case is the fire propagation on a vertical wall configuration, in which the pyrolysis gas and the total heat flux released by the flame are coupled by convective and radiative heat flux from the flame to the wall. This kind of flame is piloted by the buoyancy forces, and is characterized by a low velocity regime and a strong generation of soot particles. Although numerous works have been devoted on the study of vertical wall flames, few have been carried out on the analysis of the flame within the reactive boundary layer and the study of the zones of production of soot particles, which is data necessary for fire simulation codes validation. In this aim, simultaneous measurements of velocity by Particle Image Velocity (PIV) and of soot volume fraction by planar laser induced incandescence (LII) have been carried out on vertical wall fire generated by a vertical porous burner fed with a CH4/C2H4 mixture. First, the characteristics of soot sheet (shape, size, thickness, and peak concentration) have been studied at different heights into the flame, as well as the average and RMS soot volume fraction fields. Then, average and RMS fields of velocity and their probability density function have been analyzed. A description of the reactive boundary layer, through the definition of a characteristic velocity scale in the near-wall zone (viscous sub-layer), has been carried out by using a « PIV Zoom » set-up. Finally, simultaneous LII/PIV measurements have been carried out in order to study the influence of the aerodynamics of the flow on the soot volume fraction distribution, as well as the transport and turbulent flux of soot into the reactive boundary layer.

Page generated in 0.4519 seconds