• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Détermination des caractéristiques fondamentales de combustion de pré-mélange air-kérosène, de l’allumage à la vitesse de flamme : représentativité de surrogates mono et multi-composants / Determination of the Combustion Fubdamental Characteristics for Air-Kerosene Premixed Flames, from Ignition to Laminar Burning Velocity : Representation with Mono and Multi-Component Surrogates

Le Dortz, Romain 19 June 2018 (has links)
Face à l’explosion du trafic aérien attendue ces prochaines années, l’impact de l’aviation civile sur l’environnement est un enjeu majeur. Les instances environnementales internationales comme l’ACARE (Conseil Consultatif pour la Recherche Aéronautique en Europe), en partenariat avec les grands groupes aéronautiques internationaux, ont fixé des objectifs drastiques pour préserver l’environnement : une réduction des émissions de CO2de 75 %et une réduction de 90 % des rejets d’oxydes d’azote dans l’atmosphère sont attendues d’ici 2050 par rapport aux avions fabriqués au début du 21èmesiècle. Les turbomachines actuelles possédant un degré de maturité très élevé ne permettront pas d’atteindre ces objectifs. Les motoristes cherchent donc à étudier de nouveaux concepts en rupture technologique pour les horizons 2050, comme les moteurs à détonation, ou encore les moteurs de type combustion à volume constant. Actuellement, les phénomènes physiques associés à la combustion du kérosène dans ce type de moteur sont encore mal documentés. L’objectif de cette thèse est donc de contribuer à l’amélioration de la connaissance et de la compréhension de ces phénomènes physiques.Au cours de cette étude, les flammes de pré-mélanges de kérosène et d’air sont étudiées expérimentalement grâce à des diagnostics optiques (strioscopie,PIV) et métrologiques. Le processus de combustion est notamment étudié dans des conditions thermodynamiques semblables à celles rencontrées dans un moteur aéronautique. La phase de propagation est dans un premier temps analysée dans des conditions laminaires et adiabatiques à travers la détermination de la vitesse fondamentale de flamme non-étirée, grandeur qui pilote le processus de combustion. Puis la sensibilité du front de flamme à l’étirement et la formation des instabilités de combustion sont dans un second temps examinées. Enfin, la phase d’allumage des pré-mélanges de kérosène et d’air dans des conditions aérodynamiques critiques est elle aussi traitée.Un second point abordé au cours de cette étude concerne la reproduction d’un kérosène réel par un substitut constitué d’un nombre d’espèces limité pour simplifier les problématiques industrielles et les études amont. En effet, la composition d’un kérosène commercial est complexe et variée et l’utilisation d’un représentant permet de modéliser numériquement le phénomène de combustion plus facilement. La pertinence de quelques surrogates plus ou moins représentatifs, formulés dans la littérature et élaborés au cours de différents travaux est notamment traitée dans cette étude en comparant les résultats obtenus avec ceux d’un kérosène commercial. De plus, la modélisation de ces kérosènes de substitution par un schéma cinétique valide estégalement analysée.Ce travail prend place dans le cadre de la chaire industrielle CAPA sur la combustion alternative pour la propulsion aérobie financée par SAFRANTech, MBDA et l’ANR. / With air traffic expected to soar in the next few years, the impact of civil aviation on the environment is a major issue. International environmental organizations such as ACARE (the Advisory Council for Aeronautical Research and Innovation in Europe), in partnership with the main international aeronautical groups, have set drastic objectives to preserve the environment: a reduction of 75 % of CO2emissions and a reduction of 90 % of nitrogen oxide emissions into the atmosphere are sought by 2050, with reference to aircraft produced at the beginning of the 21st century. Current turboshaft engines have a very high degree of maturity and may not achieve these objectives. Engineers are therefore aiming to study new concepts that will become technological breakthroughs at the 2050 horizon, such as detonation engines or constant volume combustion engines. Currently, the physical phenomena associated with the combustion of kerosene in those kinds of engines are still poorly documented. The objective of this PhD thesis is to contribute to the improvement of the knowledge and understanding of these physical phenomena. In this work, premixed flames of kerosene and air are experimentally studied with optical diagnostics (Schlieren, PIV) and metrology techniques. The combustion process is here studied in thermodynamic conditions similar to those encountered in an aeronautical engine. First, the propagation phaseis analyzed in laminar and adiabatic conditions through the determination of the unstretched laminar burning velocity, which drives the combustion process. Then, in a second stage, the sensitivity of the flame front to stretch and the formation of combustion instabilities are examined. Finally, the ignition phase of premixed flames of kerosene and air under critical aerodynamic conditions is also investigated. A second issue tackled in this work is the reproduction of a real kerosene by a surrogate made up of a limited number of species, to simplify industrial problems and initial studies. Indeed, the composition of a commercial kerosene is complex and can vary, and the use of a surrogate allows an easier numerical simulation of the combustion process. The relevance of some more or less representative surrogates, formulated in the literature and elaborated all through different studies, is also studied in this thesis, by comparing the results obtained with those of a commercial kerosene. In addition, the modelling of those surrogates by a valid chemical kinetic mechanism is also analyzed. This research was conducted within the CAPA industrial Chair project dedicated to innovative combustion modes for air-breathing propulsion, financially supported by SAFRAN Tech, MBDA and France’s ANR national research agency.
2

On the combustion of premixed natural gas/gasoline dual fuel blends in SI engines

Petrakides, Sotiris January 2016 (has links)
The continuous update of challenging emission legislations has renewed the interest for the use of alternative fuels. The low carbon content, the knocking resistance, and the abundance reserves, have classified natural gas as one of the most promising alternative fuels. The major constituent of natural gas is methane. Historically, the slow burning velocity of methane has been a major concern for its utilisation in energy efficient combustion applications. As emphasized in a limited body of experimental literature, a binary blend of methane and gasoline has the potential to accelerate the combustion process in an SI engine, resulting in a faster combustion even to that of gasoline. The mechanism of such effects remains unclear. This is partially owned to the inadequate prior scientific understanding of the fundamental combustion parameters, laminar burning velocity (Su0) and Markstein length (Lb), of a gasoline-natural gas Dual Fuel (DF) blend. The value of Lb characterises the sensitivity of the flame to stretch. The flame stretch is induced by aerodynamic straining and/or flame curvature. The current research study has therefore being concerned on understanding the combustion mechanism of premixed gasoline - natural gas DF blends both on a fundamental as well as practical SI engine level. The understanding on the contribution of Su0 and Lb to the velocity of a stretched laminar propagating flame has been extended through numerical analysis. A conceptual analysis of the laminar as compared to the SI engine combustion allowed further insights on the effect of turbulence to the mass burning rate of the base fuels. On a fundamental level, the research contribution is made through the quantification of the response of Su0 and Lb with the ratio of methane to PRF95 (95%volliq iso-octane and 5%volliq n-heptane) in a DF blend. Methane has been used as a surrogate for natural gas and PRF95 as a surrogate for gasoline. Constant volume laminar combustion experiments have been conducted in a cylindrical vessel at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5, 10 Bar, and a constant temperature of 373 K. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Spherically expanding flames visualised through schlieren photography were used to derive the values of Lb and Su0. It has been concluded that for pressures relevant to SI engine operation ( > 5bar) and stoichiometric to lean Air Fuel Ratios (AFRs), there is a positive synergy for blending methane to PRF95 due to the convergence of Lb of the blended fuel towards that of pure gas and Su0 towards that of pure liquid. In an SI engine environment, the research contribution is made through the characterisation and scientific understanding of the mechanism of DF combustion, and the importance of flame-stretch interactions at various engine operating conditions. Optical diagnostics have been integrated with in-cylinder pressure analysis to investigate the mechanism of flame velocity and stability with the addition of natural gas to gasoline in a DF blend, under a sweep of engine load (Manifold Absolute Pressure = 0.44, 0.51. 0.61 Bar), speed (1250, 2000, 2750 RPM) and equivalence ratio (0.8, 0.83, 1, 1.25). Consisted with the constant volume experiments, natural gas was added to gasoline in energy ratios of 25%, 50% and 75%. It has been concluded that within the flamelet combustion regime the effect of Lb is dominating the lean burn combustion process both from a flame stability and velocity prospective. The effect of Su0 on the combustion process gradually increases as the AFR shifts from stoichiometric to fuel rich values. For stoichiometric to fuel lean mixtures, the effect of turbulence on the increase of the mass burning rate is on average 13% higher for natural gas as compared to gasoline. The higher turbulence sensitivity of natural gas is attributed to its lower Lb value.
3

Analyses théorique, numérique et expérimentale de la détermination de la vitesse de combustion laminaire à partir de flammes en expansion sphériques / Theoretical, numerical and experimental analyses of the determination of the laminar burning velocity from spherically expanding flames

Lefebvre, Alexandre 11 May 2016 (has links)
Les enjeux environnementaux et sociétaux de la combustion de combustibles fossiles pour la production d'énergie (électrique, chauffage ou transport), nécessitent le développement de nouveaux modes de combustion, de nouvelles technologies de brûleurs et de combustibles alternatifs (gazéification de la biomasse, biofuels, ...). La vitesse de combustion laminaire est un des paramètres fondamentaux utilisé pour caractériser la combustion pré-mélangée de ces nouveaux mélanges combustibles. Cette vitesse est une donnée de référence pour le processus de validation et d'amélioration des schémas cinétiques ainsi qu'un paramètre d'entrée pour estimer la vitesse de combustion turbulente de la plupart des codes de combustion turbulente. Mais bien qu'étudiée depuis plus de 100 ans, la détermination expérimentale précise de cette vitesse reste encore un défi de par les limitations inhérentes aux configurations expérimentales utilisées, en particulier pour les conditions de pression et de température élevées. Dans ce contexte, les objectifs de ces travaux de thèse concernent l'étude, l'analyse et la caractérisation des techniques de détermination de la vitesse de combustion laminaire à partir des flammes en expansion sphérique, en proposant une réflexion sur la minimisation de l'ensemble des sources d'incertitudes possibles sur la détermination de cette vitesse. Cette approche est réalisée pour la configuration de flamme en expansion sphérique, permettant des températures et pressions élevées et maitrisées.Dans une première partie, le formalisme des définitions des vitesses de flamme laminaire existantes dans cette configuration est rappelé afin de définir les facteurs d'incertitudes liés à la mesure expérimentale de ces vitesses (grandeurs cinématiques locales et cinétique globale). En particulier, les effets liés à l'estimation de l'état thermodynamique des gaz brûlés, du rayonnement et de la diffusion différentielle sont discutés. Dans une seconde partie, plusieurs dispositifs numériques et expérimentaux utilisés au cours de cette thèse et permettant l'étude de flammes sphériques en expansion sont présentés. Une étude utilisant quatre dispositifs expérimentaux différents est proposée afin d'analyser et caractériser les incertitudes inhérentes aux mesures et à leur traitement. Enfin dans une troisième partie, une définition rigoureuse de la vitesse de consommation est proposée et une nouvelle méthodologie pour la mesurer est développée. Une validation numérique complète est présentée. Puis les incertitudes liées aux rayonnement, à la diffusion différentielle et à l’extrapolation des données mesurées sont étudiées en détails. Cette dernière étape introduit un biais qui peut être conséquent, et une nouvelle méthodologie pour exploiter des mesures brutes est proposée par une comparaison directe avecdes simulations DNS reproduisant les expériences. / Environmental and social challenges concerning the combustion of fossil fuels for energy production (electricity, building and transport) require the development of new combustion processes, new burner technologies and alternative fuels (gasification of biomass, biofuels, ...). Laminar burning velocity is one of the fundamental parameters used to characterize premixed combustion for these new fuels. This speed is a reference for the validation and improvement of kinetic schemes and an input parameter to estimate the turbulent burning velocity of most turbulent combustion codes. But even if it has been studied over 100 years, the precise experimental measurement of this velocity is still complicated due to inherent limitations in experimental configurations used, especially for high pressure and temperature conditions. In this context, this thesis work focuses on the study, analysis and characterization of the different techniques used to determine the laminar burning velocity from spherically expanding flames and proposes a reflection on the minimization of all possible uncertainty sources. This approach is achieved with confined spherical flames which allow to obtain high temperature and pressure initial conditions. In the first part, the formalism of existing laminar flame speeds in spherical expanding configuration is reminded to define the factors of uncertainty related to the experimental measurement (local kinematic and global kinetic variables). In particular, the effects associated with the estimation of the burned gases thermodynamic state, radiation and differential diffusion are discussed. In the second part, several numerical and experimental devices used in this thesis are presented. A study on four different experimental setups is proposed to analyze and characterize the uncertainties in the measurements and processing. Finally, in the third part, a rigorous definition of the consumption speed is proposed and a new methodology to measure it is developed. A complete validation based on numerical results is presented. Then uncertainties related to radiation, differential diffusion and extrapolation to zero stretch rate of measured data are detailed. This last step introduces a non-negligible bias and a new methodology to exploit raw data by a direct comparison with DNS reproducing the experiments is proposed.
4

A STUDY ON SPHERICAL EXPANDING FLAME SPEEDS OF METHANE, ETHANE, AND METHANE/ETHANE MIXTURES AT ELEVATED PRESSURES

De Vries, Jaap 2009 May 1900 (has links)
High-pressure experiments and chemical kinetics modeling were performed for laminar spherically expanding flames for methane/air, ethane/air, methane/ethane/air and propane/air mixtures at pressures between 1 and 10 atm and equivalence ratios ranging from 0.7 to 1.3. All experiments were performed in a new flame speed facility capable of withstanding initial pressures up to 15 atm. The facility consists of a cylindrical pressure vessel rated up to 2200 psi. Vacuums down to 30 mTorr were produced before each experiment, and mixtures were created using the partial pressure method. Ignition was obtained by an automotive coil and a constant current power supply capable of reducing the spark energy close to the minimum ignition energy. Optical cine-photography was provided via a Z-type schlieren set up and a high-speed camera (2000 fps). A full description of the facility is given including a pressure rating and a computational conjugate heat transfer analysis predicting temperature rises at the walls. Additionally, a detailed uncertainty analysis revealed total uncertainty in measured flame speed of approximately +-0.7 cm/s. This study includes first-ever measurements of methane/ethane flame speeds at elevated pressures as well as unique high pressure ethane flame speed measurements. Three chemical kinetic models were used and compared against measured flame velocities. GRI 3.0 performed remarkably well even for high-pressure ethane flames. The C5 mechanism performed acceptably at low pressure conditions and under-predicted the experimental data at elevated pressures. Measured Markstein lengths of atmospheric methane/air flames were compared against values found in the literature. In this study, Markstein lengths increased for methane/air flames from fuel lean to fuel rich. A reverse trend was observed for ethane/air mixtures with the Markstein length decreasing from fuel lean to fuel rich conditions. Flame cellularity was observed for mixtures at elevated pressures. For both methane and ethane, hydrodynamic instabilities dominated at stoichiometric conditions. Flame acceleration was clearly visible and used to determine the onset of cellular instabilities. The onset of flame acceleration for each high-pressure experiment was recorded.
5

Experimental analysis of laminar spherically expanding flames

Varea, Emilien 30 January 2013 (has links) (PDF)
Laminar burning velocity is very useful for both combustion modeling and kinetic scheme validationand improvement. Accurate experimental data are needed. To achieve this, the spherical flame method was chosen. However various expression for burning velocity from the spherically expanding flame can be found. A theorical review details all the expressions and models for the burning veolcity and shows how they can be obtained experimentally. These models were comparated considering basic fuels - various Lewis numbers. As a result, it is shown that the pure kinematic measurement method is the only one thet does not introduce any assumptions. This kinematic measurement had needed the development and validation of an original post-processing tool. Following the theorical review, a parametric experimental study is presented. The new technique is extended to extract burning velocity and Markstein length relative to the fresh gas for pure ethanol, isooctane and blended fuels at high pressure.
6

Influence de la nature du carburant sur la combustion en moteur à allumage commandé : impact de l’étirement de flamme / Fuel influence on combustion in spark-ignition engine : flame stretch impact

Brequigny, Pierre 12 December 2014 (has links)
Dans un contexte de diminution des émissions polluantes émises par les moteurs à combustion interne, le secteur des transports assiste à une amélioration des motorisations mais également à une diversification des carburants pour l’automobile. L’utilisation de ces différents carburants entraîne souvent un impact sur les performances de la combustion. Dans le cas du moteur à allumage commandé, la performance dépend du dégagement d’énergie, image de la vitesse de la combustion, soit du front de flamme consommant le mélange air-carburant. Or toute flamme en expansion est théoriquement soumise à des effets de courbure et de cisaillement, toutes deux contributions de l’étirement. La réponse à l’étirement étant propre à chaque type de mélange air-carburant (lié au carburant proprement dit, à la richesse du mélange, à la dilution …), ce travail de thèse est centré sur la compréhension de l’impact de l’étirement sur les performances des carburants dans les moteurs à allumage commandé. Pour cela, différents mélanges air-carburant similaires du point de vue des propriétés thermodynamiques et des vitesses fondamentales de combustion laminaire mais avec des sensibilités à l’étirement différentes ont été sélectionnés. Ces mélanges ont ensuite été étudiés dans différentes configurations expérimentales et à l’aide de différentes techniques de mesure: moteur monocylindre opaque et à accès optiques, chambre sphérique de combustion turbulente. Les résultats montrent que les propriétés de sensibilités à l’étirement déterminées en régime laminaire comme la longueur de Markstein et le nombre de Lewis sont indicatrices du comportement des mélanges en combustion turbulente, comme dans la chambre de combustion caractéristique des moteurs à allumage commandé, et sont des paramètres à prendre en considération afin de prédire les performances plus globales de ces carburants que ce soit expérimentalement qu’en simulation. / In a context of decreasing pollutant emissions, the transport sector is facing an improvement of engine concept as well as a fuel diversification. The use of these different fuels often involves an impact on the combustion performance itself. In the case of Spark ignition engine, the efficiency is a function of the released heat, image of the combustion speed, i.e. the flame front speed consuming the air-fuel mixture. It is well known that every expanding flame is submitted to flame curvature and strain rate which are both contributors to flame stretch. As the answer of each air-fuel mixture (i.e. the fuel itself, the equivalence ratio, the dilution …) is different to flame stretch, the objective of this work is to understand flame stretch impact on fuel performance in Spark-Ignition engines. To achieve this goal, different fuel-air mixtures with similar unstretched laminar burning speed and thermodynamic properties but different responses to stretch were selected. Those mixtures were then studied with different experimental devices with different measurement techniques: single-cylinder metallic and optical engines, turbulent combustion spherical vessel. Results show that flame stretch sensitivity properties such as Markstein length and Lewis number, determined in laminar combustion regime, are relevant parameters to describe the flame propagation in turbulent combustion as in the combustion chamber of the Spark-Ignition engine and need to be taken into consideration to evaluate global performance of these fuels, experimentally and also in modeling simulation.
7

Etude expérimentale de la dynamique des flammes de prémélange isooctane/air en expansion laminaire et turbulente fortement diluées / Experimental study of the dynamic of expanding laminar and turbulent premixed isooctane/air flames under high dilution

Endouard, Charles 10 November 2016 (has links)
Depuis plusieurs années, les constructeurs automobiles suivent la voie du « downsizing » pour le développement des moteurs à allumage commandé. Ce procédé basé sur la réduction des cylindrées moteur combinée à la suralimentation a déjà fait ses preuves quant à son intérêt dans l’augmentation du rendement et la réduction des émissions polluantes des moteurs à essence. Les nouvelles conditions thermodynamiques, de turbulence et de dilution de ces moteurs engendrant de nouvelles possibilités de dilution dans les mélanges air/carburant, elles amènent également de nouvelles problématiques quant aux combustions anormales observées et l’apparition d’importantes variabilités cycliques. Ces travaux de thèse s’insèrent dans l’objectif de compréhension du comportement des flammes de prémélange d’isooctane/air en expansion dans des conditions représentatives d’un moteur « downsizé ». Leur étude a dans un premier temps été réalisée dans des conditions laminaires afin d’extraire les vitesses de flammes et longueurs de Markstein associées aux différents mélanges réactifs, et notamment sous forte dilution. Des corrélations ont alors été développées pour répondre aux besoins des modèles de simulation. Un nouveau dispositif de diagnostic optique a ensuite été employé pour améliorer la visualisation des flammes turbulentes en expansion. Une corrélation de coefficient correctif est ici développée pour remédier à la surestimation de vitesse engendrée par une visualisation Schlieren de ces flammes turbulentes. Une étude approfondie de l’influence des conditions thermodynamiques initiales, de la turbulence, ainsi que des caractéristiques diffusives du mélange air/carburant a par ailleurs été conduite afin d’isoler l’effet de chacun de ces paramètres sur le développement et la propagation de la flamme turbulente. Enfin l’effet d’une évolution simultanée des conditions thermodynamiques initiales similaire à celle d’une compression moteur a été étudié pour mieux appréhender les changements de comportement des flammes turbulentes dans des conditions plus représentatives du moteur à allumage commandé. / For several years, “downsizing” is used by car manufacturers to develop new spark ignition engines. This method based on the reduction of engine size combined with an increase of intake pressure (turbocharger) is well known to reduce pollutant emissions and increase efficiency. New thermodynamic, turbulent and dilution conditions could be used with these new engines but they can bring new issues like unusual combustion or cyclic variability. This thesis took place to improve the understanding of premixed expanding isooctane/air flames behavior under downsized engine-like conditions. As a first step, this work is conducted under laminar conditions to extract laminar burning velocities and Markstein lengths of the different mixtures, especially under high dilution. New correlations are then developed to answer the needs of numerical models. A new optical dispositive is then used to improve the visualization of turbulent expanding flames. A corrective coefficient correlation is proposed to avoid the overestimated values of turbulent burning speed generated by Schlieren visualization with such turbulent flames. A deep survey of starting conditions (temperature, pressure, turbulence, dissipative characteristics of air/fuel mixtures) influence is done to investigate the effect of each parameters on the development and the propagation of the turbulent flame. Finally, the effect of a coupled rise of initial temperature and pressure, similar to an engine compression, is studied to better understand the changes of flame behavior under more realistic spark-ignition engine conditions.
8

Experimental analysis of laminar spherically expanding flames / Analyse expérimentale des flammes en expansion sphérique : quelles formulations pour la vitesse de combustion ?

Varea, Emilien 30 January 2013 (has links)
Bien qu'étudiée depuis plus de 100 ans, la détermination expérimentale de la vitesse de combustion reste compliquée. Dans ce travail de thèse, la configuration de flamme sphérique en expansion a été choisie. Cependant, il apparait plusieurs formulation pour cette vitesse de combustion. Ces dernières sont liées au référentiel de mesure qui est lié 1) au laboratoire, 2) au front de flamme et 3) au taux de réaction. Ces 3 formulations, bien que différentes par définition, doivent cependant converger vers une seule et unique valeur correspondant à la vitesse de combustion laminaire à étirement nul. Une étude comparant ces formulations pour des mélanges gazeux au nombre de Lewis bien défini a été menée. Il est montré que la formulation associée au front de flamme permet d'extraire une vitesse de combustion s'abstenant de toute hypothèse. Cette technique a été ensuite appliquée pour déterminer la vitesse de combustion de mélanges issoctane/éthanol et leur dépendance en pression (10 bars). / Laminar burning velocity is very useful for both combustion modeling and kinetic scheme validationand improvement. Accurate experimental data are needed. To achieve this, the spherical flame method was chosen. However various expression for burning velocity from the spherically expanding flame can be found. A theorical review details all the expressions and models for the burning veolcity and shows how they can be obtained experimentally. These models were comparated considering basic fuels - various Lewis numbers. As a result, it is shown that the pure kinematic measurement method is the only one thet does not introduce any assumptions. This kinematic measurement had needed the development and validation of an original post-processing tool. Following the theorical review, a parametric experimental study is presented. The new technique is extended to extract burning velocity and Markstein length relative to the fresh gas for pure ethanol, isooctane and blended fuels at high pressure.
9

Influence de la végétation et du relief dans les feux de forêt extrêmes : étude de l'accumulation, de la dégradation et des propriétés de combustion des composés organiques volatiles issus des feux de forêt / Influence of vegetation and relief during extreme forest fires : study of accumulation, degradation and combustion properties of volatile organic compounds produced during forest fires

Coudour, Bruno 01 December 2015 (has links)
Les pompiers méditerranéens sont confrontés à des embrasements soudains de la végétation (AFF) dont les mécanismes ne sont pas encore bien compris. La végétation étant l'unique combustible, nous nous sommes penchés sur les gaz qui en proviennent. Nous avons d’abord étudié la dégradation thermique de quatre Composés Organiques Volatils biogéniques (COVb) à l'aide d'une pyrolyse flash et d'un four tubulaire. À partir de cette étude et de la littérature, nous avons choisi un mélange d'étude afin expérimenter ses propriétés de combustion. Nous avons ainsi déterminé l'Énergie Minimale d’Inflammation (EMI) et la vitesse fondamentale de flamme de mélanges d'α-pinène/benzène qui sont respectivement les principaux COV détectés dans les plantes et dans les fumées de feux de forêt. Le dernier chapitre concerne l'étude stationnaire de l'accumulation de gaz dans des vallées à partir d'une maquette de forêt 1/400ème disposée dans une soufflerie. / Mediterranean firefighters cope with powerful accelerations of forest fires (AFF) whose mechanisms are not very well understood. Vegetation is the only fuel of forest fire, then we studied the gases coming from them. First, we studied the thermal degradation of four Biogenic Volatil Organic Compounds (BVOCs) thanks to a flash pyrolysis and a tubular oven. From this study and literature, we chose a representative VOC mixture to study its combustion properties. We determined Minimal Ignition Energy (MIE) and its laminar burning speed of mixtures of α-pinene/benzene that are respectively the main VOC detected in vegetation and forest fire smoke. The last chapter experiment the steady-state gas accumulation above a 1/400 V-shaped forest model.

Page generated in 0.4447 seconds