• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 15
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Desenvolvimento e caracterização de revestimento biomimético super-hidrofóbico retentor de camada de ar baseado na planta aquática salvinia para redução de arrasto hidrodinâmico

Araujo, Arianne Oliveira de January 2018 (has links)
A super-hidrofobicidade é uma característica presente em diversas superfícies encontradas na natureza, conferindo-lhes determinadas características como a autolimpeza. Um dos mais conhecidos exemplos de superfície super-hidrofóbica autolimpante é a da folha de Lótus, que apresenta uma camada de retenção de ar importante entre as cavidades da superfície. Essa retenção de camada de ar entre cavidades é característica marcante de determinadas superfícies super-hidrofóbicas, e tem atraído grande atenção nos últimos anos, por ser de alto interesse tecnológico, econômico e ecológico. Algumas espécies apresentam superfície que retêm essa camada de ar por apenas algumas horas, ou dias. Em outras espécies, porém, ela se mantém por longos períodos. Uma das superfícies mais complexas é a da samambaia flutuante Salvinia, que é capaz de manter uma camada de ar estável durante várias semanas, mesmo quando submersa na água. Diversos estudos têm sido promovidos para fins de desenvolver tecnologias capazes de promover a retenção de ar na superfície por períodos longos, as quais têm grande potencial de aplicação no setor naval, por exemplo, pois serviriam para reduzir o arrasto hidrodinâmico quando utilizadas no revestimento de embarcações, diminuindo o consumo de combustível. Neste trabalho, buscou-se obter, através da mimetização da estrutura da Salvinia e suas espécies, uma superfície super-hidrofóbica retentora de camada de ar capaz de reduzir o arrasto hidrodinâmico. Desenvolveram-se, para tanto, revestimentos formados em duas etapas: uma base formada por fibras de poliamida para gerar rugosidade – aplicadas por flocagem eletroestática –, as quais foram cobertas, via spray, por um organosilano (hidrofóbico). Então, foram caracterizadas as propriedades dos revestimentos quanto à morfologia, ângulo de contato, ângulo de rolamento e volume de ar preso na superfície, bem como realizados testes para verificar sua capacidade de redução de arrasto hidrodinâmico. Os revestimentos super-hidrofóbicos desenvolvidos neste trabalho apresentaram camada de ar sobre a superfície e os testes demonstraram redução de arrasto hidrodinâmico de até 30%. / Super-hydrophobicity is a characteristic found in several surfaces of nature, which gives them certain features such as self-cleaning. One of the most well-known examples of a super-hydrophobic self-cleaning surface is the one present on the Lotus leaf, that contains an important layer of air retention between the cavities of the surface. This layer of air retention between cavities is a characteristic of some superhydrophobic surfaces, and has attracted a lot of attention recently, from technological, economic and ecological fields. Some species have a surface that holds this layer of air for only a few hours or days. Other species, however, maintain that for long periods of time. One of the most complex surfaces is the floating fern Salvinia - able to maintain a stable air layer for several weeks, even when submerged in water. Several studies have been carried out to develop technologies able to keep the air retention on surface for long periods, as they have a great potential to be applied in the naval sector, for instance, because they could reduce the hydrodynamic drag when used in the coating of boats, also reducing fuel consumption.The aim of this work is to obtain, by mimicking Salvinia’s structure and its species, a super-hydrophobic air-layer retaining surface, capable of reducing hydrodynamic drag. For this purpose, coatings composed in two stages were developed: a base composed by polyamide fibers to generate roughness - applied by electrostatic flocking - and covered by an organosilane (hydrophobic) spray. Then, the properties of the coatings were characterized in terms of morphology, angle of contact, rolling angle and volume of air hold on the surface, as well as tests to check their hydrodynamic drag reduction capacity. The super-hydrophobic coatings developed in this work have presented an air layer on surface and the tests has shown a hydrodynamic drag reduction for of up to 30%.
32

Theoretical and experimental investigation of condensation on amphiphilic nanostructured surfaces

Anderson, David Milton 18 March 2013 (has links)
Condensation of water vapor is an everyday phenomenon which plays an important role in power generation schemes, desalination applications and high-heat flux cooling of power electronic devices. Continuous dropwise condensation is a desirable mode of condensation in which small, highly-spherical droplets regularly form and shed off the surface before a thick liquid is formed, thereby minimizing the thermal resistance to heat transfer across the condensate layer. While difficult to induce and sustain, dropwise condensation has been shown to achieve heat and mass transfer coefficients over an order of magnitude higher than its filmwise counterpart. Superhydrophobic surfaces have been extensively studied to promote dropwise condensation with mixed results; often surfaces that are superhydrophobic to deposited droplets formed in the gas phase above the surface do not retain this behavior with condensed droplets nucleated and grown on the surface. Recently, nanostructured superhydrophobic surfaces have been developed that are robust to vapor condensation; however, these surfaces still are not ideal for condensation heat transfer due to the high thermal resistance of the vapor layer trapped underneath the droplets and the reduced footprint of direct contact between the highly-spherical droplets and the underlying substrate. This work has two main objectives. First, a comprehensive free energy based thermodynamic model is developed to better understand why traditional superhydrophobic surfaces often lose their properties when exposed to condensed droplets. The model is first validated using data from the existing literature and then extended to analyze the suitability of amphiphilic (e.g. part hydrophobic and part hydrophilic) nanostructured surfaces for condensation applications. Secondly, one of the promising amphiphilic surfaces identified by the thermodynamic model is fabricated and tested to observe condensation dynamic behavior. Two complementary visualization techniques, environmental scanning electron microscopy (ESEM) and optical (light) microscopy, are used to probe the condensation behavior and compare the performance to that of a traditional superhydrophobic surface. Observations from the condensation experiments are used to propose a new mechanism of coalescence that governs the temporal droplet size distribution on the amphiphilic nanostructured surface and continually generates fresh sites for the droplet nucleation and growth cycle that is most efficient at heat transfer.
33

Plasma processing of cellulose surfaces and their interactions with fluids

Balu, Balamurali 15 October 2009 (has links)
Cellulose is a biodegradable, renewable, flexible, inexpensive, biopolymer which is abundantly present in nature. In spite of these inherent advantages, cellulose fibers cannot be used directly in a number of potential industrial applications because of their hydrophilic nature; a surface modification is often required to alter the surface properties of cellulose. This thesis work reports a fabrication method that results in superhydrophobic properties (contact angle (CA) > 150°) on cellulose (paper) surfaces. Superhydrophobicity was obtained by domain-selective etching of amorphous portions of the cellulose fiber in an oxygen plasma, and by subsequently coating the etched surface with a thin fluorocarbon film deposited via plasma enhanced chemical vapor deposition from a pentafluoroethane precursor. Two forms of superhydrophobicity with vastly different degrees of adhesion were obtained by varying the plasma treatment conditions, in particular the duration of oxygen etching: "roll-off" (contact angle (CA): 166.7° ± 0.9° and CA hysteresis: 3.4° ± 0.1°) and "sticky" (CA: 153.4° ± 4.7° and CA hysteresis: 149.8±5.8°) superhydrophobicity. The CA hysteresis could be tuned between the two extremes by adjusting the oxygen etching time to control the formation of nano-scale features on the cellulose fibers. The effects of fiber types (soft vs. hard wood) and paper making parameters on fabricating superhydrophobic paper were also investigated. There were no significant differences in the formation of the nano-scale features created via oxygen etching on paper substrates obtained from different fiber types and paper making parameters. Because "roll-off" superhydrophobicity is primarily determined by the nano-scale roughness, this property is therefore not significantly affected by the fiber types or paper making parameters. While the fiber type does not affect "roll-off" or "sticky" superhydrophobicity, paper making process parameters affect the structure of the paper web on the micro-scale and thus lead to variations in "sticky" superhydrophobicity. Superhydrophobic paper substrates were patterned with high surface energy ink deposited using a commercial desktop printer. The patterns could be used to manipulate the drag and extensional adhesion of water drops on the substrates. Classic 'drag' and 'extensional' adhesion expressions were used to model the behavior of water drops on basic dot and line patterns of variable dimensions. A fundamental understanding of the adhesive forces of water drops as a function of pattern shape and size was thus obtained. Based on this knowledge, patterned paper substrates were then designed and fabricated to perform simple unit operations, such as storage, transfer, mixing and merging of water drops. These basic functionalities were combined in the design of a simple two-dimensional lab-on-paper (LOP) device. Further studies of more complicated pattern shapes led to the generation of patterns that allowed directional mobility and tunable adhesion of water drops. These developments are critical for designing novel components for two-dimensional LOP devices such as flow paths, gates/diodes, junctions and drop size filters.
34

Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

Xiu, Yonghao 10 November 2008 (has links)
In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. In controlling bead-up and roll-off characteristics of water droplets the contact angle and contact angle hysteresis were very important and we investigated the determining conditions on different model surfaces with micro- and nanostructures. Two governing equations were proposed, one for contact angle based on Laplace pressure and one for contact angle hysteresis based on Young-Dupré equation. Based on these understanding on superhydrophobicity, possible applications of the superhydrophobicity for self-cleaning and water repellency were explored and application related technical issues were addressed. Based on our understanding of the roughness effect on superhydrophobicity (both contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, silica, and Si etc were successfully prepared. For engineering applications of superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and humid environment need to be investigated. Among these factors, UV stability is the first one to be studied. Silica surfaces with excellent UV stability were prepared. UV stability on the surface currently is 5,500 h according the standard test method of ASTM D 4329. No degradation on surface superhydrophobicity was observed. New methods for preparing superhydrophobic and transparent silica surfaces were investigated using urea-choline chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of surface structures. Another possible application for self-cleaning in photovoltaic panels was investigated on Si surfaces by construction of the two-scale rough structures followed by fluoroalkyl silane treatment. Regarding the mechanical robustness, epoxy-silica superhydrophobic surfaces were prepared by O2 plasma etching to generate enough surface roughness of silica spheres followed by fluoroalkyl silane treatment. A robustness test method was proposed and the test results showed that the surface is among the most robust surfaces for the superhydrophobic surfaces we prepared and currently reported in literature.
35

Experimental investigation of the influence of surface energy and pore fluid characteristics on the behavior of partially saturated coarse-grained soils

Cutts, Ross Evan 08 July 2009 (has links)
In this study, the behavior of partially saturated coarse-grained soil packings was studied as a function of solid surface composition and aqueous salt concentration. The substrates tested were PTFE and soda lime glass, while the aqueous electrolytes consisted of NaCl and CaCl2 in differing concentrations. In order to gain a fundamental understanding of the unsaturated soils system, the two phase intersections of gas-liquid and solid-liquid were studied. The effect of varying aqueous electrolytes on the gas-liquid interface was analyzed by testing the surface tension while systematically varying the electrolyte concentration, while the effect on the solid/liquid/gas interface was studied by altering the surface hydrophobicity and aqueous solution concentration. In order to extend the analysis to soil fabrics, four ideal coarse gained packings were subdivided into their smallest repeating units. These repeating units, along with the measured dependence of the contact angles and surface tension on salt types, allowed an estimation of the equilibrium behavior of the capillary rise and tensile strength within a uniform coarse-grained fabric.
36

Development of a degreasing and anti-fogging formulation for wet wipe application for automotive glass surfaces

Bosch, Tanya January 2012 (has links)
It was the objective of this project to provide a glass cleaner formulation for a wet wipe application with cleaning and anti-fogging properties. This glass cleaner formulation was developed for automotive glass i.e. interior of windscreens. This formulation relates to a glass cleaner with a composition comprising of: (a) a blend of amphoteric surfactants; (b) a solvent system with a combination of glycol ethers; and (c) an aqueous solvent system. This glass formulation must provide good cleaning properties while also providing good wetting and sheeting properties to assist with anti-fogging properties. The objectives were obtained using 2 specific approaches: The first was by using a blend of 2 amphoteric surfactants in an alkaline medium, allowing the glass surface to become more hydrophilic which will also assist with reduction of surface tension on the glass surface. The second was by using the glycol ethers that have good coupling properties and surface tension reducing properties. The formulation was evaluated using commercial standard test methods as per the industry. A predictive model was successfully obtained for each of the five criteria that were evaluated using the 25 formulations derived from the statistical design. There were variables and variable interactions that were antagonistic for some of the criteria which were found to be synergistic for others. To achieve satisfactory cleaning, the fogging rating had to be compromised.
37

An Analysis of Surface Structure for Battery Packs : A study on Reduction of Sensitivity to Contamination

Fetahu, Kosovare, Tokovic, Azra January 2024 (has links)
The primary focus of this study is the reduction of sensitivity to contamination of the battery pack surfaces. During the project, information on adhesion mechanisms that cause particles to accumulate on surfaces has been collected through literature research. This has been done to create a fundamental understanding regarding the factors that affect dust and particle accumulation. In addition, an in-depth study of articles concerning the modification of surface structure has been carried out. In connection with the literature study, an experimental analysis was carried out where a number of surfaces provided by Scania were examined to understand their structure and properties. This was done in order to identify suitable surface treatments/methods that could be applied. The experimental results show that all the surfaces consist of only micro-level structures. Two of the samples showed increased risk for dust accumulation due to one of them having a step profile and the other having a wavy surface structure with peaks and valleys. Previous research suggests that surfaces that are structured on the micro- and nano-level are essential to achieve dust- and particle-free/repellent surfaces. By structuring surfaces at the micro- and nano-level, a so-called hierarchical structure inspired by the natural self-cleaning mechanisms of the lotus leaf can be achieved. This results in surfaces with a high water contact angle and low surface energy, which contribute to minimized adhesion forces and in turn particle repellent surfaces.
38

Environmental analysis of biologically inspired self-cleaning surfaces

Raibeck, Laura 10 July 2008 (has links)
Biologically inspired design is used as an approach for sustainable engineering. Taking a biologically inspired approach, one abstracts ideas and principles from nature, an inherently sustainable system, and uses them in engineering applications with the goal of producing environmentally superior designs. One such biological idea with potential environmental benefits for engineering is microscale and nanoscale surface roughness found on the Lotus plant and many other surfaces in nature. These surfaces repel water and aid in contaminant removal; this self-cleaning phenomenon is called the "Lotus Effect," in honor of the plant first observed to exhibit it. The structures responsible for the Lotus Effect inspired research and development of many technologies capable of creating hydrophobic, self-cleaning surfaces, and many potential self-cleaning surface applications exist beyond nature's intended application of cleaning. While statements have been made about the environmental benefits of using a self-cleaning surface, only limited scientific data exist. Artificial self-cleaning surfaces are successfully cleaned using fog or mist. This shows that such surfaces can be cleaned with less energy and water intensive methods than the more conventional methods used to clean regular surfaces, such as spray or solvent cleaning. This research investigates the potential environmental burden reductions associated with using these surfaces on products. A life cycle assessment is performed to determine the environmental burdens associated with manufacturing a self-cleaning surface, for three production methods: a chemical coating, a laser ablated steel template, and an anodized aluminum template. The environmental benefits and burdens are quantified and compared to those of more conventional cleaning methods. The results indicate that self-cleaning surfaces are not necessarily the environmentally superior choice.
39

Bovine serum albumin adhesion force measurements using an atomic force microscopy

Lai, Chun-Chih January 2006 (has links)
In this thesis, a direct method of Atomic Force Microscopy (AFM) technique has been developed to measure the adhesion forces between BSA and two different surfaces: mica (a hydrophilic surface); and polystyrene (a hydrophobic surface); in PBS solution. We have shown possible to measure interactions between proteins and substrate surface directly without any modification to the substrate and the AFM tip; this means protein molecules can keep the natural elastic property within the force measurements. The average measured value of adhesion forces between BSA and mica is 0.036 ± 0.002 nN, and between BSA and polystyrene is 0.066 ± 0.003 nN. The polystyrene surface is more adhesive to BSA than the mica surface. This is consistent with previous research, which assessed that hydrophobic surfaces enhance protein adhesion but hydrophilic surfaces do not.
40

Hydrophobicity of Magnetite Coating on Low Carbon Steel

Akhtar, Mst Alpona 08 1900 (has links)
Superhydrophobic coatings (SHC) with excellent self-cleaning and corrosion resistance property is developed on magnetite coated AISI SAE 1020 steel by using a simple immersion method. Roughness measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), contact angle measurement (CAM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS), and qualitative characterization of self-cleaning behavior, antifouling property and durability of the coatings are assessed. A water contact angle as high as 152o on the coated surface with excellent self-cleaning and resistivity to corrosion and good longevity in atmospheric air is obtained. Self-cleaning test results prove that these surfaces can find applications in large scale production of engineering materials. Potentiodynamic polarization tests and EIS tests confirm that the superhydrophobic low carbon steel surfaces have better resistance to corrosion compared to bare steel and magnetite coated steel in 3.5% NaCl solution. But the longevity of the coated steel surfaces in 3.5% salt solution is limited, which is revealed by the immersion durability test. However, hydrophobic coatings (HC) have better stability in normal tap water, and it can stay unharmed up to 15 days. Finally, hydrophobic coatings on low carbon steel surface retains hydrophobic in open atmosphere for more than two months. Results of this investigation show surface roughness is a critical factor in manufacturing hydrophobic steel surfaces. Higher contact angles are obtained for rougher and more uniform surfaces. A linear mathematical relationship (y =6x+104; R2 = 0.93) is obtained between contact angle (y) and surface roughness (x).

Page generated in 0.0427 seconds