• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytical and numerical investigation of billet augmented hydrostatic extrusion

Sondor, Anantha Shayana. January 1989 (has links)
Thesis (M.S.)--Ohio University, November, 1989. / Title from PDF t.p.
2

Investigation of the extrusion pressure requirements and the residual stress distribution in orthodox and augmented hydrostatic extrusion

Gudal, Sameer. January 1993 (has links)
Thesis (M.S.)--Ohio University, August, 1993. / Title from PDF t.p.
3

Study on Hydrostatic Extrusion of Composite Rods

Lu, Po-Xian 05 September 2001 (has links)
The object of this study is to explore the deformation pattern of axisymmetric clad materials composed of the single-core and the sleeve during hydrostatic extrusion, and discuss the relations between processing condition factors and extrusion pressure in hydrostatic extrusion of axisymmetric clad materials. In the FEM simulation of composite materials during hydrostatic extrusion, this paper describes a technique that can be used for predicting whether core bursting of composite materials occurs or not. The effect of several extrusion parameters on the damage value of the core is examined: extrusion ratio(R), die semicone angle(£\¢X), bonding friction factor(mi), material strength ratio. By performing FEM simulations and discussing the effect of parameters on distribution of damage value obtained, it is possible to establish a data base for prevention of fracture of the core. The paper has designed and constructed an experimental receiver pressure of hydrostatic apparatus with a maximum working pressure of 7000 kgf/cm2. In experiment, extrusion of Cu-Al composite rods with different of core radius ratio was carried out. It has been found that uniform deformation always occurs under the combination of hard sleeve and soft core and the core layer usually fails due to the tension under the combination of hard core and soft sleeve.
4

Development of stirred near-plug flow high-pressure extruder-reactor

Quevedo, Jesus Alejandro January 1981 (has links)
No description available.
5

Investigation of the extrusion pressure requirements and the residual stress distribution in orthodox and augmented hydrostatic extrusion

Gudal, Sameer January 1993 (has links)
No description available.
6

Analytical and numerical investigation of billet augmented hydrostatic extrusion

Sondor, Anantha Shayana January 1989 (has links)
No description available.
7

Computer simulation of product augmented hydrostatic extrusion

Wang, Shun-Sheng January 1989 (has links)
No description available.
8

Process structuring of polymers by solid phase orientation processing

Coates, Philip D., Caton-Rose, Philip D., Ward, Ian M., Thompson, Glen P. January 2013 (has links)
No / Solid phase orientation of polymers is one of the most successful routes to enhancement of polymer properties. It unlocks the potential of molecular orientation for the achievement of a range of enhanced physical properties. We provide here an overview of techniques developed in our laboratories for structuring polymers by solid phase orientation processing routes, with a particular focus on die drawing, which have allowed control of significant enhancements of a single property or combinations of properties, including Young's modulus, strength, and density. These have led to notable commercial exploitations, and examples of load bearing low density materials and shape memory materials are discussed.
9

Experimentelle und numerische Untersuchungen von Al-Mg-Verbunden mittels Verbundschmieden

Feuerhack, Andreas 15 October 2014 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit dem Formänderungsvermögen von Al-Mg-Verbunden. Diese hybriden Verbunde wurden mittels hydrostatischem Strangpressen hergestellt und sind gekennzeichnet durch eine stoffschlüssige Verbindung basierend auf einer intermetallischen Phase. Basis der Untersuchungen waren die experimentellen Analysen der grundlegenden Hauptumformarten des Schmiedens Stauchen, Breiten und Steigen, um eine umfassende Charakterisierung der Umformbarkeit derartiger hybrider Verbunde zu gewährleisten. Dabei erfolgte die Herleitung von geeigneten Umformgesenken, der Aufbau eines Experimentierfeldes sowie die Definition der Variationsparameter. Die experimentellen Methoden wurden zweckmäßig mit numerischen Methoden ergänzt, um die Problemstellung umfassend zu analysieren. Bei den Untersuchungen wurde die belastungsabhängige Umformbarkeit der hybriden Al-Mg-Verbunde, insbesondere der intermetallischen Phasen, festgestellt. Aufgrund der Mikrostruktur verfügen die intermetallischen Phasen über eine Vorzugsrichtung, welche eine Schädigung hauptsächlich in radialer Belastungsrichtung aufweist. Die Schädigung der primären Grenzschicht geschieht durch eine Fragmentierung, wobei sich durch Diffusionsprozesse eine sekundäre Grenzschicht entlang der neuen Kontaktstellen bildet. Durch die Anwendung der numerischen Methoden konnten die maximalen Schubspannungen sowie die Vergleichsumformgrade als bedeutsame Einflussgrößen ermittelt werden. Basierend auf diesen Erkenntnissen erfolgte die Herleitung eines makromechanischen Versagenskriteriums, mit dem innerhalb der numerischen Simulation kritische Bereiche der Grenzschichtschädigung ohne experimentelle Versuche dargestellt werden können. Abschließend wurden Optimierungsstrategien auf Basis der gewonnenen Erkenntnisse abgeleitet. Die Modifikation des Mantel-Kern-Verhältnisses sowie die gezielte Anwendung von Exzentrizitäten bieten die Möglichkeit, anforderungsspezifische maßgeschneiderte hybride Al-Mg-Verbunde zu realisieren. / The presented work describes the extensive studies of the formability of hybrid Al-Mg compounds. These hybrid compounds were produced by a hydrostatic co-extrusion process and can be characterized by an interface consisting of an intermetallic phase. Basis of the studies were experimental analyses of the fundamental forming processes upsetting, spreading and uprising to provide a comprehensive characterization of the formability of such hybrid compounds. Therefore, the development of suitable forging dies, the experimental set-up and the definition of the variation of parameters was carried out. The experimental methods were supported with appropriate numerical methods to analyze the compounds in detail. In the studies, a load direction dependency of the formability of hybrid Al-Mg compounds, especially related to the intermetallic phases was detected. Due to the microstructure of the intermetallic phases, a primarily preferred damage direction in radial load direction, was determined. The damage to the primary interface occurs by a fragmentation mechanism. Due to diffusion processes a secondary interface along the new contact areas was established. The application of numerical methods showed that the maximum shear stresses and the logarithmic equivalent strains were determined as the significant parameters. Based on these scientific findings a macro-mechanical damage model was developed. By means of this model the critical areas of the interface damage can be visualized in the numerical simulation. Finally, based on the scientific findings optimization strategies were derived. The modification of the sleeve-core ratio and the specific application of eccentricity by a new eccentric hydrostatic co-extrusion process allow the full application of such hybrid Al-Mg compounds in the industry.
10

Experimentelle und numerische Untersuchungen von Al-Mg-Verbunden mittels Verbundschmieden

Feuerhack, Andreas 23 May 2014 (has links)
Die vorliegende Arbeit befasst sich mit dem Formänderungsvermögen von Al-Mg-Verbunden. Diese hybriden Verbunde wurden mittels hydrostatischem Strangpressen hergestellt und sind gekennzeichnet durch eine stoffschlüssige Verbindung basierend auf einer intermetallischen Phase. Basis der Untersuchungen waren die experimentellen Analysen der grundlegenden Hauptumformarten des Schmiedens Stauchen, Breiten und Steigen, um eine umfassende Charakterisierung der Umformbarkeit derartiger hybrider Verbunde zu gewährleisten. Dabei erfolgte die Herleitung von geeigneten Umformgesenken, der Aufbau eines Experimentierfeldes sowie die Definition der Variationsparameter. Die experimentellen Methoden wurden zweckmäßig mit numerischen Methoden ergänzt, um die Problemstellung umfassend zu analysieren. Bei den Untersuchungen wurde die belastungsabhängige Umformbarkeit der hybriden Al-Mg-Verbunde, insbesondere der intermetallischen Phasen, festgestellt. Aufgrund der Mikrostruktur verfügen die intermetallischen Phasen über eine Vorzugsrichtung, welche eine Schädigung hauptsächlich in radialer Belastungsrichtung aufweist. Die Schädigung der primären Grenzschicht geschieht durch eine Fragmentierung, wobei sich durch Diffusionsprozesse eine sekundäre Grenzschicht entlang der neuen Kontaktstellen bildet. Durch die Anwendung der numerischen Methoden konnten die maximalen Schubspannungen sowie die Vergleichsumformgrade als bedeutsame Einflussgrößen ermittelt werden. Basierend auf diesen Erkenntnissen erfolgte die Herleitung eines makromechanischen Versagenskriteriums, mit dem innerhalb der numerischen Simulation kritische Bereiche der Grenzschichtschädigung ohne experimentelle Versuche dargestellt werden können. Abschließend wurden Optimierungsstrategien auf Basis der gewonnenen Erkenntnisse abgeleitet. Die Modifikation des Mantel-Kern-Verhältnisses sowie die gezielte Anwendung von Exzentrizitäten bieten die Möglichkeit, anforderungsspezifische maßgeschneiderte hybride Al-Mg-Verbunde zu realisieren. / The presented work describes the extensive studies of the formability of hybrid Al-Mg compounds. These hybrid compounds were produced by a hydrostatic co-extrusion process and can be characterized by an interface consisting of an intermetallic phase. Basis of the studies were experimental analyses of the fundamental forming processes upsetting, spreading and uprising to provide a comprehensive characterization of the formability of such hybrid compounds. Therefore, the development of suitable forging dies, the experimental set-up and the definition of the variation of parameters was carried out. The experimental methods were supported with appropriate numerical methods to analyze the compounds in detail. In the studies, a load direction dependency of the formability of hybrid Al-Mg compounds, especially related to the intermetallic phases was detected. Due to the microstructure of the intermetallic phases, a primarily preferred damage direction in radial load direction, was determined. The damage to the primary interface occurs by a fragmentation mechanism. Due to diffusion processes a secondary interface along the new contact areas was established. The application of numerical methods showed that the maximum shear stresses and the logarithmic equivalent strains were determined as the significant parameters. Based on these scientific findings a macro-mechanical damage model was developed. By means of this model the critical areas of the interface damage can be visualized in the numerical simulation. Finally, based on the scientific findings optimization strategies were derived. The modification of the sleeve-core ratio and the specific application of eccentricity by a new eccentric hydrostatic co-extrusion process allow the full application of such hybrid Al-Mg compounds in the industry.

Page generated in 0.1086 seconds