• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 20
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 22
  • 19
  • 18
  • 13
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Efeitos da articaína associada a 2-hidroxipropil-beta-ciclodextrina ou epinefrina sobre a viabilidade celular de queratinócitos humanos (HaCaT) / Effects of articaine associated to 2-hydroxypropyl-beta-cyclodextrin or epinephrine on human keratinocyte cell (HaCaT) viability

Burga-Sánchez, Jonny, 1974- 24 August 2018 (has links)
Orientadores: Francisco Carlos Groppo, Maria Cristina Volpato / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba / Made available in DSpace on 2018-08-24T14:56:00Z (GMT). No. of bitstreams: 1 Burga-Sanchez_Jonny_M.pdf: 1446024 bytes, checksum: 5abbf4456cb67b444d465cc424ab2baa (MD5) Previous issue date: 2014 / Resumo: A associação a carreadores tem sido proposta visando prolongar o efeito anestésico, além de reduzir a toxicidade de vários anestésicos locais, incluindo a articaína (ATC). O objetivo do estudo foi avaliar in vitro o efeito da ATC livre ou associada a diferentes concentrações de epinefrina ou 2-hidroxipropil-?-ciclodextrina (HP-?-CD) sobre a viabilidade celular de queratinócitos humanos imortalizados (HaCaT). Foi avaliado também o efeito do metabissulfito de sódio, principal antioxidante e componente das soluções anestésicas comerciais, sobre a viabilidade das citadas células. A microscopia eletrônica de varredura (MEV) foi utilizada para avaliar as características físicas dos cristais da ATC, da HP-?-CD e do complexo de inclusão liofilizado de ATC/HP-?-CD. As células HaCaT foram expostas às formulações de ATC em diferentes concentrações desde 0.1% até 4%, associadas ou não a epinefrina 1:50.000, 1:100.000 e 1:200.000, ou em associação com HP-?-CD; em tempos de 10, 30, 60 e 240 min. As células viáveis foram quantificadas pelo método do MTT após os períodos de exposição e comparadas a um grupo controle sem tratamento. A avaliação celular qualitativa foi realizada por microscopia de fluorescência pelo método de coloração Live/Dead®. A análise estatística foi realizada por two-way ANOVA (teste de Tukey, p>0.05). Os resultados revelaram que a toxicidade da ATC depende da concentração e do tempo de exposição, sendo que quando complexada com HP-?-CD ou associada à epinefrina 1:200.000, houve tendência a diminuir a toxicidade avaliada inicialmente. Da mesma forma, os adjuvantes como a epinefrina, o metabissulfito de sódio e a HP-?-CD sozinhos mostraram biocompatibilidade nas concentrações empregadas neste estudo. Concluímos que a associação da ATC com a HP-?-CD bem como à epinefrina 1:200.000 diminuiu a toxicidade do anestésico local quando avaliado nas concentrações mais baixas. Entretanto, a associação destes adjuvantes não melhorou o perfil de toxicidade da ATC quando avaliado em concentrações clínicas usuais de 2 e 4% / Abstract: The association with carriers has been proposed to prolong the anesthetic effect and reduce the toxicity of several local anesthetics including articaine (ATC). The aim of this study was to assess the in vitro effect of ATC associated with different concentrations of epinephrine or 2-hydroxypropyl-?-cyclodextrin (HP-?-CD) on cell viability in immortalized human keratinocyte cells cultures (HaCaT). It was also evaluated the effect of sodium metabisulphite, major antioxidant component of commercial anesthetic solutions, on the viability of cited cells. The scanning electron microscopy (SEM) was used to assess the physical characteristics of ATC crystals, HP-?-CD and ATC/HP-?-CD lyophilized inclusion complex. The HaCaT cells were exposed to different formulations of ATC in concentrations from 0.1% to 4%, associated or not with epinephrine 1:50.000, 1:100.000 and 1:200.000, or in formulation with HP-?-CD; in 10, 30, 60 and 240 min time exposure. Vital HaCaT cells were quantified by the MTT method after exposure periods and compared to an untreated control group. Cells were assessed qualitatively by fluorescent microscopy using the staining Live/Dead® method. Statistical analysis was performed by two-way ANOVA (Tukey test, p> 0.05). The results showed that toxicity of ATC depends on the concentration and exposure time, and when complexed with HP-?-CD or associated with epinephrine 1:200.000, there was a tendency to decrease the toxicity initially evaluated. Likewise, adjuvants such as epinephrine, sodium metabisulphite and HP-?-CD alone showed biocompatibility in concentrations used in this study. In conclusion, the association of ATC with HP-?-CD as well as epinephrine 1:200.000 decreased local anesthetic toxicity when lower concentrations of ATC are used. However, the combination of adjuvants did not improve the toxicity profile of ATC when used in clinical usual concentrations of 2 and 4% / Mestrado / Farmacologia, Anestesiologia e Terapeutica / Mestre em Odontologia
32

Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis

Caporali, Paola, Bruno, Francesco, Palladino, Giampiero, Dragotto, Jessica, Petrosini, Laura, Mangia, Franco, Erickson, Robert P., Canterini, Sonia, Fiorenza, Maria Teresa 01 September 2016 (has links)
Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disorder caused by defective intracellular trafficking of exogenous cholesterol. Purkinje cell (PC) degeneration is the main sign of cerebellar dysfunction in both NPC1 patients and animal models. It has been recently shown that a significant decrease in Sonic hedgehog (Shh) expression reduces the proliferative potential of granule neuron precursors in the developing cerebellum of Npc1(-/-) mice. Pursuing the hypothesis that this developmental defect translates into functional impairments, we have assayed Npc1-deficient pups belonging to the milder mutant mouse strain Npc1(nmf164) for sensorimotor development from postnatal day (PN) 3 to PN21. Npc1(nmf164)/Npc1(nmf164) pups displayed a 2.5-day delay in the acquisition of complex motor abilities compared to wild-type (wt) littermates, in agreement with the significant disorganization of cerebellar cortex cytoarchitecture observed between PN11 and PN15. Compared to wt, Npc1(nmf164) homozygous mice exhibited a poorer morphological differentiation of Bergmann glia (BG), as indicated by thicker radial shafts and less elaborate reticular pattern of lateral processes. Also BG functional development was defective, as indicated by the significant reduction in GLAST and Glutamine synthetase expression. A reduced VGluT2 and GAD65 expression also indicated an overall derangement of the glutamatergic/GABAergic stimulation that PCs receive by climbing/parallel fibers and basket/stellate cells, respectively. Lastly, Npc1-deficiency also affected oligodendrocyte differentiation as indicated by the strong reduction of myelin basic protein. Two sequential 2-hydroxypropyl-beta-cyclodextrin administrations at PN4 and PN7 counteract these defects, partially preventing functional impairment of BG and fully restoring the normal patterns of glutamatergic/GABAergic stimulation to PCs. These findings indicate that in Npc1(nmf164) homozygous mice the derangement of synaptic connectivity and dysmyelination during cerebellar morphogenesis largely anticipate motor deficits that are typically observed during adulthood.
33

Desenvolvimento de nanosistemas contendo 17-AAG com propriedade antitumoral

CAMPOS, Thiers Araújo 17 February 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-07-28T13:28:28Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Thiers Tese versão digital.pdf: 2738186 bytes, checksum: 9403cdd3615d510302f8e562a4b2df09 (MD5) / Made available in DSpace on 2017-07-28T13:28:28Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Thiers Tese versão digital.pdf: 2738186 bytes, checksum: 9403cdd3615d510302f8e562a4b2df09 (MD5) Previous issue date: 2016-02-17 / CNPQ / O 17-N-alil-amino-17-demetoxigeldanamicina (17-AAG) é um inibidor da proteína chaperona Hsp90 e tem sido estudado extensivamente como um agente anticancerígeno. O seu uso terapêutico ainda é limitado devido a sua baixa hidrofilicidade e toxicidade. Diante disso, o estudo tem como objetivo principal desenvolver um nanossistema contendo 17-AAG e verificar a sua ação antiproliferativa com efeitos tóxicos reduzidos. Primeiro, foram desenvolvidos lipossomas catiônicos contendo 17-AAG avaliando sua ação através de análises in vitro (viabilidade celular para linhagem de células Hela, MCF-7, J774 e Sarcoma 180) e in vivo (atividade antintumoral utilizando o tumor de Ehrlich). No segundo momento, foram preparados complexos de inclusão (17-AAG:HPβCD) obtidos por liofilização e caracterizados físicoquimicamente. Por último, os lipossomas contendo complexo de inclusão do 17-AAG foram preparados pelo método de hidratação do filme lipídico e submetidos a análise de citotoxicidade frente as células Hela e MCF-7. Os lipossomas catiônicos desenvolvidos apresentaram monodispersos e com tamanho inferior a 200 nm. O 17-AAG na bicamada dos lipossomas influenciou apenas na diminuição do potencial zeta passando de +21,13 para +11, 43 mV. O tratamento nas três células de câncer com estes lipossomas contendo o 17AAG e nas diferentes concentrações estudadas, demonstraram percentuais maiores de inibição em relação ao composto livre. Já os lipossomas branco não foram tóxicos frente as células sadias como macrófagos (J774). Nos estudos in vivo foi verificado que não houve diferença estatística quanto ao volume do tumoral, peso dos animais, peso do tumor, peso dos órgãos e índice mitótico. No entanto, alterações foram visíveis na histomorfologia do baço, fígado e rins. Os complexos de inclusão obtidos demonstraram a integridade do 17-AAG identificado através do teor (99 ± 0.79%).O diagrama de solubilidade de fases de 17-AAG:HPβCD apresentou uma curva do tipo AL, com K1:1 = 5,3 CAMPOS, T.A., (2016) Desenvolvimento de um nanosistema contendo 17-AAG ... 11 M-1. Na presença de 1000 mM de HPβCD, a solubilidade do 17-AAG aumentou 39 vezes. O complexo de inclusão 17-AAG:HPβCD apresentou modificações no IV, difração de raios-X, microscopia e DSC e TG, sugerindo a formação do complexo de inclusão. A citotoxicidade frente a células sadias (J774) evidenciaram que o complexo de inclusão apresentou efeitos inibitórios similares ao composto livre em concentrações <10 µM. Após o processo de preparação, os lipossomas contendo complexo de inclusão apresentaram diâmetro médio variando iando entre 142 e 157 nm, e o índice de polidispersão não superior a 0,37. As formulações mantiveram-se estáveis após 30 dias quando armazenadas a 4ºC. Os resultados apresentaram, que não há diferença significativa nas formas de encapsular o 17-AAG nos lipossomas, revelando uma EE% de 99% para ambos tipos. Os lipossomas desenvolvidos neste estudo, obtiveram uma carga positiva e sua morfologia microscópica confirma o tamanho e o tipo de lipossomas preparados. Nos estudos de citotoxicidade a ação inibitória do LP-17-AAG e o LP-17-AAG:HPβCD demonstraram-se mais eficientes comparado ao fármaco livre. Estes resultados demonstram que a complexação do 17-AAG a ciclodextrina, e sua incorporação em lipossomas, proporcionou uma melhoria na estabilidade e hidrossolubilidade do composto, viabilizando, portanto, seu uso terapêutico. / The 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) is an inhibitor of Hsp90 chaperone protein and has been extensively studied as an anticancer agent. The therapeutic use is still limited due to its low hydrophilicity and hepatotoxicity. Thus, the study aims to develop a nanossistema containing 17AAG and check their antiproliferative action with reduced toxicity. First, cationic liposomes containing 17-AAG were developed evaluating their action through in vitro tests (cell viability for line of Hela cells, MCF-7, J774 and Sarcoma 180) and in vivo (antintumoral activity using the Ehrlich tumor). In the second phase, they were prepared inclusion complexes (17-AAG: HPβCD) obtained by lyophilization and physico-chemically characterized. Finally, liposomes containing the inclusion complex of 17-AAG were prepared by lipid film hydration method and subjected forward cytotoxicity assay Hela and MCF-7 cells. Developed cationic liposomes showed monodisperse and smaller than 200 nm. The 17-AAG in the bilayer of the liposomes only influenced the decrease in zeta potential of passing +21.13 +11 to 43 mV. The treatment in all three cancer cells with these liposomes containing 17-AAG and different concentrations studied showed greater percentage inhibition compared to the free compound. Already the white liposomes were no toxicity in healthy cells such as macrophages (J774). In vivo studies it was found that there was no statistical difference in the volume of tumor, animal weight, tumor weight, organ weight and mitotic index. However, changes were visible on histomorphology of spleen, liver and kidneys. The solubility phase diagram of 17-AAG: HPβCD showed a curved-type LA, K1: 1 = 5.3 m-1. In the presence of HPβCD 1000 mm, the solubility of 17-AAG increased 39 times. The inclusion complex of 17-AAG: HPβCD presented modifications IR, X-ray diffraction, microscopy and DSC and TG, suggesting the formation of the inclusion complex. After the manufacturing process, liposome proved to be homogeneous with a mean diameter ranging between 142 and 157 nm and a polydispersity not exceeding 0.37.The front cytotoxic to healthy cells (J774) showed that the inclusion complex showed similar inhibitory effects to the free compound in concentrations of <10 µM. After the process of preparation of the inclusion complex containing liposomes had an average diameter between 142 and 157 nm and the polydispersion index not greater than 0.37. The formulations were stable after 30 days when stored at 4 ° C. The results showed that there is no significant difference in the ways of encapsulating 17-AAG in liposomes, revealing an EE% 99% for both types. The Liposomes developed in this study obtained a positive charge and their microscopic morphology confirms the size and type of liposomes. In cytotoxicity studies the inhibitory action of the LP-17-AAG and the LP-17-AAG: HPβCD proved to be more efficient compared to the free drug.These results demonstrate that the complexation of cyclodextrin 17-AAG, and their incorporation into liposome gave an improvement in stability and water solubility of the compound, allowing therefore their therapeutic use.
34

Desenvolvimento e caracterização de matrizes poliméricas como veículo de componentes ativos do extrato etanólico da película de amendoim / Development and characterization of polymer matrices as a vehicle for active components of the ethanol extract of peanut skin

Marcela Perozzi Tedesco 02 March 2015 (has links)
A película de amendoim é um resíduo da indústria de alimentos. Esse resíduo é rico em compostos fenólicos como resveratrol e procianidinas e apresenta elevada atividade antioxidante e atividade farmacológica. Apesar de suas atividades farmacológicas, compostos fenólicos apresentam baixa biodisponibilidade devido à glucuronidação catalisada pelas enzimas UDP-glucuronosyltransferases (UGTs), que acontece na primeira passagem no intestino e/ou fígado, dificultando a utilização dos compostos fenólicos como agentes terapêuticos. Filmes de desintegração oral permitem que o princípio ativo seja absorvido no epitélio bucal diretamente pela circulação sistêmica podendo melhorar a biodisponibilidade desses compostos naturais. Nesse contexto, o objetivo desse trabalho foi desenvolver um filme de desintegração oral à base de gelatina e hidroxipropilmetilcelulose (GEL:HPMC) incorporado com extrato de película de amendoim como um carreador de compostos bioativos. O extrato de película de amendoim foi produzido utilizando-se etanol (70%) como solvente (razão sólidos/solvente de 1:20) à temperatura ambiente sob agitação mecânica (10 minutos), sendo realizada três extrações consecutivas. O extrato foi liofilizado para ser caracterizado em relação à atividade antioxidante, fenólicos totais e aflatoxinas. Os filmes de desintegração oral com diferentes concentrações de gelatina e hidroxipropilmetilcelulose (GEL:HPMC) foram produzidos por casting (2g de macromoléculas/100 g de solução filmogênica e 0,4g de sorbitol/100g de solução filmogênica). O extrato de película de amendoim foi incorporado líquido e concentrado nas concentrações de 10, 20 e 30g/100g de solução filmogênica. Os filmes foram caracterizados em relação à propriedades mecânicas, ângulo de contato, tempo de desintegração, mucoadesividade, pH de superfície, microscopia eletrônica de varredura e espectroscopia de infravermelho. O extrato (liofilizado) apresentou concentração fenólica igual a 718,57 mg de equivalente em ácido gálico/g e EC50 igual a 146,07 &plusmn; 8.37 &micro;g/mL e 0,37 ng B&#8321;/g. Os filmes sem adição de extrato, independente da formulação, apresentaram homogeneidade e, de um modo geral, os filmes à base de hidroxipropilmetilcelulose apresentaram melhores propriedades mecânicas, hidrofilicidade superior, tempo de desintegração reduzido e mucoadesividade superior em relação aos filmes com gelatina em sua composição. Comportamento similar foi observado para os filmes de desintegração oral com adição de extrato. Entretanto, filmes com adição de extrato e altas concentrações de gelatina (100:0, 75:25) apresentaram formação de complexos insolúveis entre taninos e proteínas, aparentes visualmente. Em função dos resultados obtidos, os filmes à base de hidroxipropilmetilcelulose (0:100) e com 20% de extrato de película de amendoim apresentaram propriedades mecânicas superiores (tensão na ruptura = 26,63 MPa, elongação = 4,97% e módulo elástico = 1284,82 MPa) e menor tempo de desintegração (17,87 segundos) em relação as demais formulações, sendo esta considerada a formulação otimizada como potencial aplicação para filmes de desintegração oral. / Peanut skin is a food industry byproduct which is rich in phenolic compounds, such as resveratrol and procyanidins. Moreover, it has high antioxidant and pharmacological properties. Despite these activities, phenolic compounds have low oral bioavailability due to glucuronidation catalyzed by the enzyme UDP-glucuronosyltransferases (UGTs). This catalyze occurs in the first-pass metabolism (gut and/or liver) difficulting the use of phenolic compounds as therapeutic agents. For oral disintegrating films the active ingredient is directly absorbed into systemic circulation by oral epithelium improving the bioavailability of these natural compounds. The aim of this study was to develop oral disintegrating film composed of gelatin and hydroxypropyl methylcellulose (GEL: HPMC) added of peanut skin extract as a vehicle for bioactive compounds. The peanut skin extract was produced using ethanol (70%) as solvent (solid/solvent ratio 1:20) at room temperature under mechanical stirring (10 minutes) with three consecutive extractions. The extract was lyophilized to be characterized by antioxidant activity, total phenolic and aflatoxins. The oral disintegrating films were produced by casting (2g macromolecules/100 g filmogenic solution and 0.4g of sorbitol/100g of filmogenic solution) with different concentrations of gelatin and hydroxypropylmethylcellulose (GEL: HPMC). The peanut skin extract was added to films liquid and concentrated at concentrations of 10, 20 and 30g / 100g of filmogenic solution. The films were characterized by mechanical properties, contact angle, disintegrating time, mucoadesivity, surface pH, scanning electron microscopy and infrared spectroscopy. The extract (lyophilized) showed phenolic concentration of 718.57 mg of gallic acid equivalent/g, EC50 of 146.07 &plusmn; 8.37 &micro;g/mL and 0.37 ng B&#8321;/g. Films without extract, regardless of formulation were homogeneous. In general, hydroxypropyl methylcellulose films exhibited better mechanical properties, higher hydrophilicity and mucoadesivity and reduced disintegration time compared to films with gelatin in its composition. Similar behavior was observed for oral disintegrating films with addition of extract. Films formulation with high gelatin content (100: 0, 75:25) added of extract showed insoluble complexes formed between proteins and tannins. Hydroxypropyl methylcellulose films (0: 100) added of peanut skin extract (20%) showed superior mechanical properties (tensile strength = 26.63 MPa, elongation = 4.97% and elastic modulus = 1284.82 MPa) and lower disintegration time (17.87 seconds) compared with other formulations, which is considered the optimized formulation as a potential application for oral disintegrating films.
35

A survey of aldicarb poisoning in dogs and cats in Gauteng and evaluation of the efficacy of hydroxypropyl-β-cyclodextrin as a treatment in aldicarb poisoning

Verster, Ryno Stockenström 27 June 2005 (has links)
Worldwide, pesticides are applied to protect crops against insects, fungi and other parasites. Without these chemicals it would not be possible to produce sufficient food to satisfy the demand of an ever-increasing world population. Unfortunately, many cases of accidental and intentional poisoning of humans and animals occur and the objectives of this study were to obtain statistics of aldicarb poisoning in companion animals in Gauteng Province and to evaluate hydroxypropyl-<font face="symbol">b</font>-cyclodextrin as a potential treatment. Cyclodextrins are ring-shaped oligosaccharides with a hydrophilic exterior and a hydrophobic interior. The interior cavity is capable of complexing fat-soluble molecules small enough to fit inside. Aldicarb is moderately lipid-soluble, non-ionized and of low molecular weight and thus fits all criteria for complexation with cyclodextrin. Questionnaires were posted to all private practitioners in Gauteng. The survey was designed to determine the percentage of aldicarb cases seen, clinical signs observed, treatment regimen, proposals for preventative actions and more effective treatments. Other questions included duration of treatment, survival rate, cost to client, post-mortem findings and reasons for poisonings. Thirty-four percent of respondants indicated the total number of all clinical cases presented at their practices during 2003. The percentage of suspected aldicarb cases as a proportion of all cases ranged from 0.05 - 2.6 % for dogs and 0.09 - 3.33 % for cats. Only 26.5 % of practitioners sometimes submitted samples for laboratory confirmation of aldicarb poisoning. Salivation and tremors were the most common clinical signs observed by private practitioners and the majority of suspected poisoning cases were treated with atropine, intravenous fluid and electrolyte therapy and the oral administration of activated charcoal. Thirty-three respondents thought that there was an increase in the number of aldicarb cases, but 35 felt there was no increase during 2003. Fifteen respondents were reluctant to venture an opinion. Most veterinarians indicated that criminal intent was the main reason why animals were poisoned and 95 % of respondents reported that it occurred throughout the year, but an increased incidence was observed during holiday periods.Survival times in the majority of rats dosed with aldicarb and receiving intravenous cyclodextrin were longer, compared to the control rats only dosed with aldicarb per os. Rats receiving cyclodextrin immediately before aldicarb, survived longer when compared to rats, which received aldicarb prior to cyclodextrin. / Dissertation (MSc (Paraclinical Sciences))--University of Pretoria, 2005. / Paraclinical Sciences / unrestricted
36

Binding Interactions of (R)- and (S)-hydroxypropyl-CoM Dehydrogenases and the Zinc Knuckle Proteins Air1 and Air2

Bakelar, Jeremy W. 01 May 2015 (has links)
This work is focused on understanding protein function by describing how paralogous proteins with overlapping and distinct functions interact with their substrates and with other proteins. Two model systems are the subject of this research: (1) the stereospecific dehydrogenases R- and S-HPCDH, and (2) the zinc knuckle proteins Air1 and Air2. R- and S-HPCDH are homologous enzymes that are central to the metabolism of propylene and epoxide in the soil bacterium Xanthobacter autotrophicus. The bacterium produces R- and S-HPCDH simultaneously to facilitate transformation of R- and S-enantiomers of epoxypropane to a common achiral product 2-ketopropyl-CoM (2-KPC). Both R- and S-HPCDH are highly stereospecific for their respective substrates as each enzyme displays less than 0.5% activity with the opposite substrate isomer. Presented here are substrate-bound x-ray crystal structures of S-HPCDH. Comparisons to the previously reported product-bound structure of R-HPCDH reveal structural differences that provide each enzyme with a distinct substrate binding pocket. These structures demonstrate how chiral discrimination by R- and S-HPCDH results from alternative binding of the distal end of substrates within each substrate binding pocket, providing a structural basis for stereospecificity displayed by R- and S-HPCDH. Air1 and Air2 are homologous eukaryotic proteins that individually function within a trimeric protein complex called TRAMP. In the nucleus, TRAMP participates in RNA surveillance, processing, and turnover by stimulating the 3’-5’ exonucleolytic degradation of targeted RNAs by the nuclear exosome. Previous studies have indicated that within TRAMP Air1 and Air2 provide crucial protein-protein interactions that link the individual subunits of the complex. However, the mechanistic details of these protein-protein interactions are poorly understood. The work in this dissertation has characterized a previously unknown binding interface between Air2 and another TRAMP component, the helicase Mtr4. This interaction may explain how helicase activity is modulated in TRAMP. In addition to TRAMP protein interactions, preliminary studies have identified a small region of Air1 that is required for modulating the activity of a protein that is not found in TRAMP, the methyltransferase Hmt1. Collectively, these studies provide important characterization of Air1 and Air2 protein-binding interactions, and establish a foundation for future research efforts aimed at exploring Air protein function.
37

A study of the shearing and crosslinking of hydroxypropyl cellulose, a liquid crystal polymer, and its permeability as a hydrogel membrane

Song, Cheng Qian January 1991 (has links)
No description available.
38

Hydroxypropyl Cyclodextrin Improves Amiodarone-Induced Aberrant Lipid Homeostasis of Alveolar Cells / ヒドロシキプロピルシクロデキストリンは、アミオダロンが誘導する肺胞上皮細胞の脂質異常を改善する

Kanagaki, Shuhei 23 March 2022 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13481号 / 論医博第2256号 / 新制||医||1059(附属図書館) / (主査)教授 平井 豊博, 教授 岩田 想, 教授 秋山 芳展 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
39

Characterizing Interfacial and Bulk Interactions Between Cellulose Ethers and Bile Salts: Impact on In Vitro Lipid Digestion

Zornjak, Jennifer Anne 14 January 2019 (has links)
Elevated levels of lipids and LDL-cholesterol in the blood are significant risk factors associated with developing cardiovascular diseases (CVDs). A potential strategy to combat these risk factors is decreasing lipid absorption by modulating the digestibility of lipids in the human intestinal tract. Since bile salts (BS) play key roles during this process, lipid digestion could be controlled ultimately by limiting the access of BS to the lipid surface. Cellulose ethers (CEs), surface-active dietary fibers and common food additives, might be promising ingredients to control lipid digestion either by creating surface layers around lipid droplets that hinder adsorption of BS, or by sequestering BS in the aqueous phase. However, the precise mechanisms behind these interactions remain unclear. Surface analysis techniques were used to better understand the mechanisms by which CEs with diverse molecular structure and charge (commercial and novel hydroxypropyl-cellulose (HPC)) interact with BS at the solid surface and in the aqueous phase. The potential of CE-stabilized emulsions to influence lipid digestion was also investigated in vitro. Both CEs show potential in modulating lipid digestion; the potential of the commercial HPC to interfere with lipid digestion may be more related to its ability to sequester BS in solution and form mixed HPC-BS complexes that are not easily removed from the surface, whereas the novel HPC seems more effective at creating strong surface layers that resist displacement by BS. These findings can be exploited in developing strategies to design novel food matrices with improved functional properties to optimize lipid digestion and absorption. / MSLFS / Diseases of the heart and circulation are the number one cause of death in the United States (US) and it is predicted that at least 45% of the US population (131.2 million) will have some form of these diseases by 2035. Consumption of reduced-fat foods is one strategy to combat CVDs, but fats contribute to various sensory and nutritional properties of foods. Another strategy is to develop foods that incorporate dietary fibers which could interfere with the digestion of fat. However, the mechanism behind the ability of dietary fiber to interfere with fat digestion remains unclear and depends on the fiber type. One of our objectives was to look at the main interactions between a type of dietary fiber, cellulose derivatives (which are ingredients used in the food industry), and two types of bile salts, (BSs) which are important intestinal components present during fat digestion, at a surface representing a fat droplet and in the aqueous phase. Another objective was to look at the digestibility of cellulose derivative systems, compared to another food ingredient (Tween 20). We found that the different BSs played different roles at the surface and interacted differently with the cellulose derivatives. We also found that both cellulose derivatives showed potential in interfering with lipid digestion. This allows a better understanding of how cellulose derivative systems are affected by digestion and could allow us to design new foods with natural products from plants to improve wellness in the US.
40

A Combined Rheological and Thermomechanical Analysis Approach for the Assessment of Pharmaceutical Polymer Blends

Isreb, Mohammad, Chalkia, Marianiki, Gough, Timothy D., Forbes, Robert T., Timmins, Peter 08 September 2022 (has links)
Yes / The viscoelastic nature of polymeric formulations utilised in drug products imparts unique thermomechanical attributes during manufacturing and over the shelf life of the product. Nevertheless, it adds to the challenge of understanding the precise mechanistic behaviour of the product at the microscopic and macroscopic level during each step of the process. Current thermomechanical and rheological characterisation techniques are limited to assessing polymer performance to a single phase and are especially hindered when the polymers are undergoing thermomechanical transitions. Since pharmaceutical processing can occur at these transition conditions, this study successfully proposes a thermomechanical characterisation approach combining both mechanical and rheological data to construct a comprehensive profiling of polymeric materials spanning both glassy and rubbery phases. This approach has been used in this study to assess the mechanical and rheological behaviour of heterogenous polymer blends of hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) over a shearing rate range of 0.1–100 s−1 and a temperature range of 30–200 °C. The results indicate that HPC and HPMC do not appear to interact when mixing and that their mixture exhibits the mechanistic properties of the two individual polymers in accordance with their ratio in the mixture. The ability to characterise the behaviour of the polymers and their mixtures before, throughout, and after the glassy to rubbery phase transition by application of the combined techniques provides a unique insight towards a quality-by-design approach to this and other polymer-based solid dosage forms, designed with the potential to accelerate their formulation process through obviating the need for multiple formulation trials.

Page generated in 0.0594 seconds