Spelling suggestions: "subject:"hyperon"" "subject:"deperon""
11 |
Measurement of the Induced Polarization of Lambda(1116) in Kaon Electroproduction with CLAS.Gabrielyan, Marianna 21 March 2012 (has links)
The CLAS Collaboration is using the p(e, e′ K+ p)π- reaction to perform a measurement of the induced polarization of the electroproduced Λ(1116). The parity-violating weak decay of the Λ into pπ- (64%) allows extraction of the recoil polarization of the Λ. The present study uses the CEBAF Large Acceptance Spectrometer (CLAS) to detect the scattered electron, the kaon, and the decay proton. CLAS allows for a large kinematic acceptance in Q2 (0.8 ≤ Q2 ≤ 3.5 GeV2 ), W (1.6 ≤ W ≤ 3.0 GeV), as well as the kaon scattering angle. In this experiment a 5.499 GeV electron beam was incident upon an unpolarized liquid-hydrogen target. The goal is to map out the kinematic dependencies for this polarization observable to provide new constraints for theoretical models of the electromagnetic production of kaon-hyperon final states. Along with previously published photo- and electroproduction cross sections and polarization observables from CLAS, SAPHIR, and GRAAL, these data are needed in a coupled-channel analysis to identify previously unobserved s-channel resonances.
|
12 |
The Strong Potential of ΛΛ Femtoscopy at HADESBohman, Malin January 2022 (has links)
The aims of this thesis project have been to determine the feasibility of hyperon reconstruction utilizing a newly developed and implemented vertex fitter based on the Lagrange multiplier method. This was achieved through simulation and subsequent analysis of the reaction specified below, detailing the production of Λ-hyperon and K+ -meson pairs from proton-proton collisions. 𝑝(4.5𝐺𝑒𝑉)𝑝 → ΛΛ𝐾+𝐾+ This reaction channel provides a more complicated topology than previous benchmark studies of the fitter performance and is of interest as it enables studies of the strong ΛΛ interaction via the femtoscopy method. For this reason, measurements of this reaction channel were among the physics goals of the HADES beam time taking place in February 2022. As such, this study has provided insight into the feasibility of performing a femtoscopy analysis on this data by reconstructing the Λ-pair using the fitter. The obtained results provide the Λ-pair reconstruction efficiency and purities based on the lower limit of expected events collected during this beamtime. As for the fitter performance, it was found from the reconstructed kinematics of the Λ-pair that the fitter can effectively remove background over most of the kinematic region. However, for low relative momentum, combinatorial background becomes especially prominent. As this region is of interest in a femtoscopy study, it has been identified as especially challenging for the developed analysis procedure.
|
13 |
Hyperon-Produktion und -Polarisation in der Reaktion p (3,5 GeV) + Nb mit HADESWendisch, Christian 08 January 2015 (has links) (PDF)
Zur Erforschung des Verhaltens der Kernmaterie wurde mit dem Dielektronen-Spektrometer HADES am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt unter anderem die Reaktion p + Nb bei 3,5 GeV kinetischer Strahlenergie untersucht.
Obwohl HADES primär für den Nachweis seltener leptonischer Zerfälle der Vektormesonen ρ, ω und φ konzipiert wurde, eignet sich das Spektrometer aufgrund seiner präzisen Spurrekonstruktion auch für die Untersuchung von hadronischen Kanälen. Zum Studium der Strangeness-Signaturen in der Reaktion p + Nb wird in dieser Arbeit der im Jahr 2008 aufgezeichnete Datensatz von ca. 4,2 Milliarden Kollisionen hinsichtlich der Produktion und der dabei auftretenden Polarisation von Λ-Hyperonen untersucht.
Die polarisierte Produktion von Hyperonen in Kernreaktionen mit unpolarisierten Ausgangsteilchen wurde entgegen den theoretischen Erwartungen erstmals 1976 beobachtet und fand bis heute keine allgemein akzeptierte und alle beobachteten Abhängigkeiten umfassende Erklärung auf Grundlage der starken Wechselwirkung. Es werden zunächst die theoretischen Modelle der Hyperonpolarisation diskutiert und der experimentelle Zugang erklärt. Dieser gelingt über den schwachen Zerfall des Λ-Hyperons, der als natürliches Polarimeter wirkt und somit insbesondere in Reaktionen mit unpolarisierten Nukleonen ein ideales Instrument zur Untersuchung der Polarisation darstellt.
Aufgrund der großen Raumwinkelabdeckung ermöglicht HADES, Λ-Hyperonen in einem weiten Phasenraumbereich zu rekonstruieren, sodass deren Produktionsrate und Polarisation in Abhängigkeit der Observablen Transversalimpuls pt und Rapidität y analysiert werden. Aus insgesamt 1,1 Millionen rekonstruierten Λ-Hyperonen werden nach der Korrektur bezüglich der Detektorakzeptanz und -effizienz transversale Massenspektren extrahiert. Deren inverser Steigungsparameter TB (y) nimmt ein Maximum von rund 90 MeV bei y = 1, d.h. unterhalb der Schwerpunktsrapidität im Nukleon-Nukleon-Stoß (ycm = 1,12), an und fällt zu kleinen Rapiditäten deutlich schneller ab als für Teilchen im thermischen Gleichgewicht.
Die Λ-Rapiditätsdichte zeigt eine asymmetrische Verteilung, die aufgrund von Mehrfachstreuung der Λ-Hyperonen hauptsächlich mit Kern-Nukleonen deutlich zur Targetrapidität verschoben ist und mit steigender Rapidität > 0,3 stark abnimmt. Auf den vollständigen Phasenraum extrapoliert, erfüllt die Produktionsrate von 0,018 ± 0,004 Λ-0 Hyperons je Ereignis, verbunden mit der Multiplizität von Ks -Mesonen und den mittels Transportmodell abgeleiteten Produktionsverhältnissen zu den übrigen Kaonen und Hyperonen, die Strangeness-Erhaltung im Mittel der gemessenen Kollisionen.
Darüber hinaus zeigt das Λ-Hyperon eine signifikant negative Polarisation relativ zur Normalen seiner Produktionsebene, die über den verfügbaren Phasenraum gemittelt Px = (−10,6 ± 1,3) % beträgt und deren Betrag mit steigendem Transversalimpuls entsprechend Px (pt ) = (−0,19 ± 0,02) (GeV/c)−1 pt linear zunimmt.
Die Ergebnisse bezüglich der Λ-Polarisation und Phasenraumverteilung werden mit denen anderer Experimente ähnlicher Stoßsysteme verglichen und im Rahmen von systematischen Untersuchungen mit Transportmodellen interpretiert, um Details zur Dynamik der Hyperon-Produktion in Proton-Kern-Reaktionen abzuleiten. Derzeit verfügbare Versionen der GiBUU- und UrQMD-Modelle können die experimentellen Verteilungen im Phasenraum jedoch nicht hinreichend reproduzieren.
Mit der Rekonstruktion von Ξ− -Hyperonen und φ-Mesonen wird ein Ausblick auf weiterführende Studien zur Strangeness-Produktion in Nukleon-Kern-Stößen gegeben. / With the dielectron spectrometer HADES, located at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, p + Nb reactions at a kinetic beam energy of 3.5 GeV were measured to study the behavior of nuclear matter. Although primarily designed for the detection of rare leptonic decays of the light vector mesons ρ, ω and φ, the spectrometer renders itself very well suited for the investigation of hadrons, due to its excellent tracking capability. This thesis presents results of the production and polarization of strange Λ hyperons in about 4.2 billion reactions of p + Nb recorded in 2008.
In contrast to theoretical expectations, the polarized production of hyperons was observed in 1976 for the first time in nuclear reactions with unpolarized beams. Based on the fundamental properties of strong interaction, to date no single explanation exists describing all dependencies of the observed hyperon polarization. Therefore, common theoretical models of hyperon polarization are introduced. Acting as a natural polarimeter, the Λ hyperon represents an excellent tool to study the phenomenon of hyperon polarization especially in reactions with unpolarized beams and targets. Hence, the experimental technique for extracting the polarization using the weak decay of the Λ hyperon is explained.
Due to a large solid angle coverage, HADES allows for the reconstruction of hadrons within a wide phase space range. Consequently, a double-differential analysis of the polarization and production probability as a function of transverse momentum pt and rapidity y is performed.
In total, 1.1 million Λ hyperons are reconstructed and corrected for detector acceptance and efficiency. The inverse slope parameter TB is extracted from transverse mass spectra. Its rapidity dependence TB (y) shows a maximum of 90 MeV at y = 1, i.e. below the center-of-mass rapidity of the nucleon-nucleon collision ycm = 1.12, and a stronger decrease to lower rapidities than particles in thermal equilibrium. The Λ rapidity density shows an asymmetric distribution, shifted towards target rapidity, which is probably caused by multiple scattering on target nucleons. Extrapolated to the full phase space, the total multiplicity of 0.018 ± 0.004 Λ hyperons per event satisfies strangeness conservati- 0 on on average. For that purpose, the Ks production rate from another analysis and ratios to the other, unmeasured, strange hadrons, derived from transport simulations, are taken into account.
Furthermore, the Λ hyperon shows a significant negative polarization perpendicular to its production plane, which amounts to Px = (−10.6 ± 1.3) % averaged over the phase space accessible to HADES. The measured Λ polarization increases almost linearly with increasing transverse momentum pt , according to Px (pt ) = (−0.19 ± 0.02) (GeV/c)−1 pt .
In order to spot details on the dynamics of hyperon production in proton-nucleus reactions, the results on Λ polarization and phase space distribution are compared to those of similar reactions. Additionally, a systematic investigation with transport model simulations is performed. The experimental distributions can not be reproduced sufficiently well by the presently available GiBUU and URQMD models.
Moreover, an outlook on further studies of strangeness production in nucleon-nucleus collisions by reconstruction of Ξ− hyperons and φ mesons is given.
|
14 |
Hyperon-Produktion und -Polarisation in der Reaktion p (3,5 GeV) + Nb mit HADESWendisch, Christian 27 November 2014 (has links)
Zur Erforschung des Verhaltens der Kernmaterie wurde mit dem Dielektronen-Spektrometer HADES am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt unter anderem die Reaktion p + Nb bei 3,5 GeV kinetischer Strahlenergie untersucht.
Obwohl HADES primär für den Nachweis seltener leptonischer Zerfälle der Vektormesonen ρ, ω und φ konzipiert wurde, eignet sich das Spektrometer aufgrund seiner präzisen Spurrekonstruktion auch für die Untersuchung von hadronischen Kanälen. Zum Studium der Strangeness-Signaturen in der Reaktion p + Nb wird in dieser Arbeit der im Jahr 2008 aufgezeichnete Datensatz von ca. 4,2 Milliarden Kollisionen hinsichtlich der Produktion und der dabei auftretenden Polarisation von Λ-Hyperonen untersucht.
Die polarisierte Produktion von Hyperonen in Kernreaktionen mit unpolarisierten Ausgangsteilchen wurde entgegen den theoretischen Erwartungen erstmals 1976 beobachtet und fand bis heute keine allgemein akzeptierte und alle beobachteten Abhängigkeiten umfassende Erklärung auf Grundlage der starken Wechselwirkung. Es werden zunächst die theoretischen Modelle der Hyperonpolarisation diskutiert und der experimentelle Zugang erklärt. Dieser gelingt über den schwachen Zerfall des Λ-Hyperons, der als natürliches Polarimeter wirkt und somit insbesondere in Reaktionen mit unpolarisierten Nukleonen ein ideales Instrument zur Untersuchung der Polarisation darstellt.
Aufgrund der großen Raumwinkelabdeckung ermöglicht HADES, Λ-Hyperonen in einem weiten Phasenraumbereich zu rekonstruieren, sodass deren Produktionsrate und Polarisation in Abhängigkeit der Observablen Transversalimpuls pt und Rapidität y analysiert werden. Aus insgesamt 1,1 Millionen rekonstruierten Λ-Hyperonen werden nach der Korrektur bezüglich der Detektorakzeptanz und -effizienz transversale Massenspektren extrahiert. Deren inverser Steigungsparameter TB (y) nimmt ein Maximum von rund 90 MeV bei y = 1, d.h. unterhalb der Schwerpunktsrapidität im Nukleon-Nukleon-Stoß (ycm = 1,12), an und fällt zu kleinen Rapiditäten deutlich schneller ab als für Teilchen im thermischen Gleichgewicht.
Die Λ-Rapiditätsdichte zeigt eine asymmetrische Verteilung, die aufgrund von Mehrfachstreuung der Λ-Hyperonen hauptsächlich mit Kern-Nukleonen deutlich zur Targetrapidität verschoben ist und mit steigender Rapidität > 0,3 stark abnimmt. Auf den vollständigen Phasenraum extrapoliert, erfüllt die Produktionsrate von 0,018 ± 0,004 Λ-0 Hyperons je Ereignis, verbunden mit der Multiplizität von Ks -Mesonen und den mittels Transportmodell abgeleiteten Produktionsverhältnissen zu den übrigen Kaonen und Hyperonen, die Strangeness-Erhaltung im Mittel der gemessenen Kollisionen.
Darüber hinaus zeigt das Λ-Hyperon eine signifikant negative Polarisation relativ zur Normalen seiner Produktionsebene, die über den verfügbaren Phasenraum gemittelt Px = (−10,6 ± 1,3) % beträgt und deren Betrag mit steigendem Transversalimpuls entsprechend Px (pt ) = (−0,19 ± 0,02) (GeV/c)−1 pt linear zunimmt.
Die Ergebnisse bezüglich der Λ-Polarisation und Phasenraumverteilung werden mit denen anderer Experimente ähnlicher Stoßsysteme verglichen und im Rahmen von systematischen Untersuchungen mit Transportmodellen interpretiert, um Details zur Dynamik der Hyperon-Produktion in Proton-Kern-Reaktionen abzuleiten. Derzeit verfügbare Versionen der GiBUU- und UrQMD-Modelle können die experimentellen Verteilungen im Phasenraum jedoch nicht hinreichend reproduzieren.
Mit der Rekonstruktion von Ξ− -Hyperonen und φ-Mesonen wird ein Ausblick auf weiterführende Studien zur Strangeness-Produktion in Nukleon-Kern-Stößen gegeben.:1 Einleitung 11
1.1 Struktur der Materie 11
1.2 Schwellennahe Erzeugung von Hadronen mit Strangeness 13
1.3 Modellbeschreibungen der Strangeness-Produktion 15
1.4 Untersuchung von Kernmaterie in Nukleon-Kern-Reaktionen 19
1.5 Zielsetzung und Gliederung der Arbeit 20
2 Hyperonpolarisation 23
2.1 Experimentelle Beobachtungen 23
2.2 Modellbeschreibungen 25
2.2.1 SU(6)-Modell 25
2.2.2 s-Quark-Streumodell 27
2.2.3 Lund-Modell (Farb-Flussröhre) 28
2.2.4 Rekombinationsmodell (Thomas-Präzession) 28
2.2.5 Quantenmechanische Modelle 29
2.3 Der selbstanalysierende Λ-Zerfall als Spin-Polarimeter 30
3 Experimentiersystem HADES und Analysewerkzeuge 33
3.1 Komponenten zur Teilchenidentifikation 35
3.2 Magnetspektrometer 37
3.3 Datenerfassung und -verarbeitung 43
3.4 Analyse- und Simulationssoftware 45
3.5 Transportmodelle 46
4 Datenanalyse zur Reaktion p + Nb 51
4.1 Charakteristika des Experiments 51
4.2 Teilchenidentifikation 55
4.2.1 Flugzeitmethode 56
4.2.2 Energieverlustmethode 58
4.3 Rekonstruktion des Λ-Hyperons 60
4.3.1 Teilchenselektion bezüglich des Energieverlustes 61
4.3.2 Invariantes Massenspektrum 62
4.3.3 Zerfallsgeometrie 65
4.3.4 Vertexrekonstruktion 66
4.3.5 Determination des kombinatorischen Untergrundes 69
4.3.6 Differentielle Analyse bezüglich des Phasenraums 73
4.4 Rekonstruktion des Ξ -Hyperons 77
4.5 Effizienz- und Akzeptanzbestimmung mittels Detektorsimulation 82
4.5.1 Selbstkonsistenz der Simulation 86
4.5.2 Überprüfung der Vertexrekonstruktion 89
4.5.3 Rekonstruktion der Zerfallslänge 91
4.5.4 Normierung der Produktionsrate 93
4.5.5 Differentielle Produktionsrate der Λ-Hyperonen 95
4.6 Messung der Λ-Polarisation 97
4.6.1 Referenzkoordinatensystem 97
4.6.2 Akzeptanzkorrektur 99
4.6.3 Bestimmung der mittleren Polarisation 101
4.6.4 Differentielle Untersuchung der Polarisation 104
5 Diskussion der Ergebnisse
5.1 Λ-Phasenraumverteilung 109
5.1.1 Transversalimpulsverteilungen 110
5.1.2 Extrapolation der transversalen Impulsspektren 113
5.1.3 Systematische Unsicherheiten 114
5.1.4 Vergleich mit Vorhersagen von Transportmodellen 117
5.1.5 Λ-Produktionsmechanismen im BUU-Modell 121
5.1.6 Vergleich mit Ergebnissen anderer Experimente 124
5.2 Strangeness-Erhaltung 131
5.3 Λ-Polarisation 134
5.3.1 Phasenraumabhängigkeit der Polarisation 135
5.3.2 Einordnung der Ergebnisse in den vorhanden Weltdatensatz 139
6 Zusammenfassung und Ausblick 143
A Anhang
A.1 Definition teilchenphysikalischer Variablen 149
A.2 Effizienzkorrektur für Λ-Hyperonen 153
A.3 Simulationen mit Transportmodellen 154
A.3.1 Ultrarelativistic Quantum Molecular Dynamics (UrQMD) 154
A.3.2 Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) 157
A.3.2.1 Eingangsparameter 157
A.3.2.2 Systematische Untersuchung der Λ-Produktion 159
A.3.3 Implementierung elementarer Wirkungsquerschnitte 167
Abbildungsverzeichnis 169
Tabellenverzeichnis 172
Literaturverzeichnis 173 / With the dielectron spectrometer HADES, located at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, p + Nb reactions at a kinetic beam energy of 3.5 GeV were measured to study the behavior of nuclear matter. Although primarily designed for the detection of rare leptonic decays of the light vector mesons ρ, ω and φ, the spectrometer renders itself very well suited for the investigation of hadrons, due to its excellent tracking capability. This thesis presents results of the production and polarization of strange Λ hyperons in about 4.2 billion reactions of p + Nb recorded in 2008.
In contrast to theoretical expectations, the polarized production of hyperons was observed in 1976 for the first time in nuclear reactions with unpolarized beams. Based on the fundamental properties of strong interaction, to date no single explanation exists describing all dependencies of the observed hyperon polarization. Therefore, common theoretical models of hyperon polarization are introduced. Acting as a natural polarimeter, the Λ hyperon represents an excellent tool to study the phenomenon of hyperon polarization especially in reactions with unpolarized beams and targets. Hence, the experimental technique for extracting the polarization using the weak decay of the Λ hyperon is explained.
Due to a large solid angle coverage, HADES allows for the reconstruction of hadrons within a wide phase space range. Consequently, a double-differential analysis of the polarization and production probability as a function of transverse momentum pt and rapidity y is performed.
In total, 1.1 million Λ hyperons are reconstructed and corrected for detector acceptance and efficiency. The inverse slope parameter TB is extracted from transverse mass spectra. Its rapidity dependence TB (y) shows a maximum of 90 MeV at y = 1, i.e. below the center-of-mass rapidity of the nucleon-nucleon collision ycm = 1.12, and a stronger decrease to lower rapidities than particles in thermal equilibrium. The Λ rapidity density shows an asymmetric distribution, shifted towards target rapidity, which is probably caused by multiple scattering on target nucleons. Extrapolated to the full phase space, the total multiplicity of 0.018 ± 0.004 Λ hyperons per event satisfies strangeness conservati- 0 on on average. For that purpose, the Ks production rate from another analysis and ratios to the other, unmeasured, strange hadrons, derived from transport simulations, are taken into account.
Furthermore, the Λ hyperon shows a significant negative polarization perpendicular to its production plane, which amounts to Px = (−10.6 ± 1.3) % averaged over the phase space accessible to HADES. The measured Λ polarization increases almost linearly with increasing transverse momentum pt , according to Px (pt ) = (−0.19 ± 0.02) (GeV/c)−1 pt .
In order to spot details on the dynamics of hyperon production in proton-nucleus reactions, the results on Λ polarization and phase space distribution are compared to those of similar reactions. Additionally, a systematic investigation with transport model simulations is performed. The experimental distributions can not be reproduced sufficiently well by the presently available GiBUU and URQMD models.
Moreover, an outlook on further studies of strangeness production in nucleon-nucleus collisions by reconstruction of Ξ− hyperons and φ mesons is given.:1 Einleitung 11
1.1 Struktur der Materie 11
1.2 Schwellennahe Erzeugung von Hadronen mit Strangeness 13
1.3 Modellbeschreibungen der Strangeness-Produktion 15
1.4 Untersuchung von Kernmaterie in Nukleon-Kern-Reaktionen 19
1.5 Zielsetzung und Gliederung der Arbeit 20
2 Hyperonpolarisation 23
2.1 Experimentelle Beobachtungen 23
2.2 Modellbeschreibungen 25
2.2.1 SU(6)-Modell 25
2.2.2 s-Quark-Streumodell 27
2.2.3 Lund-Modell (Farb-Flussröhre) 28
2.2.4 Rekombinationsmodell (Thomas-Präzession) 28
2.2.5 Quantenmechanische Modelle 29
2.3 Der selbstanalysierende Λ-Zerfall als Spin-Polarimeter 30
3 Experimentiersystem HADES und Analysewerkzeuge 33
3.1 Komponenten zur Teilchenidentifikation 35
3.2 Magnetspektrometer 37
3.3 Datenerfassung und -verarbeitung 43
3.4 Analyse- und Simulationssoftware 45
3.5 Transportmodelle 46
4 Datenanalyse zur Reaktion p + Nb 51
4.1 Charakteristika des Experiments 51
4.2 Teilchenidentifikation 55
4.2.1 Flugzeitmethode 56
4.2.2 Energieverlustmethode 58
4.3 Rekonstruktion des Λ-Hyperons 60
4.3.1 Teilchenselektion bezüglich des Energieverlustes 61
4.3.2 Invariantes Massenspektrum 62
4.3.3 Zerfallsgeometrie 65
4.3.4 Vertexrekonstruktion 66
4.3.5 Determination des kombinatorischen Untergrundes 69
4.3.6 Differentielle Analyse bezüglich des Phasenraums 73
4.4 Rekonstruktion des Ξ -Hyperons 77
4.5 Effizienz- und Akzeptanzbestimmung mittels Detektorsimulation 82
4.5.1 Selbstkonsistenz der Simulation 86
4.5.2 Überprüfung der Vertexrekonstruktion 89
4.5.3 Rekonstruktion der Zerfallslänge 91
4.5.4 Normierung der Produktionsrate 93
4.5.5 Differentielle Produktionsrate der Λ-Hyperonen 95
4.6 Messung der Λ-Polarisation 97
4.6.1 Referenzkoordinatensystem 97
4.6.2 Akzeptanzkorrektur 99
4.6.3 Bestimmung der mittleren Polarisation 101
4.6.4 Differentielle Untersuchung der Polarisation 104
5 Diskussion der Ergebnisse
5.1 Λ-Phasenraumverteilung 109
5.1.1 Transversalimpulsverteilungen 110
5.1.2 Extrapolation der transversalen Impulsspektren 113
5.1.3 Systematische Unsicherheiten 114
5.1.4 Vergleich mit Vorhersagen von Transportmodellen 117
5.1.5 Λ-Produktionsmechanismen im BUU-Modell 121
5.1.6 Vergleich mit Ergebnissen anderer Experimente 124
5.2 Strangeness-Erhaltung 131
5.3 Λ-Polarisation 134
5.3.1 Phasenraumabhängigkeit der Polarisation 135
5.3.2 Einordnung der Ergebnisse in den vorhanden Weltdatensatz 139
6 Zusammenfassung und Ausblick 143
A Anhang
A.1 Definition teilchenphysikalischer Variablen 149
A.2 Effizienzkorrektur für Λ-Hyperonen 153
A.3 Simulationen mit Transportmodellen 154
A.3.1 Ultrarelativistic Quantum Molecular Dynamics (UrQMD) 154
A.3.2 Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) 157
A.3.2.1 Eingangsparameter 157
A.3.2.2 Systematische Untersuchung der Λ-Produktion 159
A.3.3 Implementierung elementarer Wirkungsquerschnitte 167
Abbildungsverzeichnis 169
Tabellenverzeichnis 172
Literaturverzeichnis 173
|
15 |
Inclusive hyperon polarisation studies at the CERN SPS hyperon beamNewbold, David Michael January 1998 (has links)
No description available.
|
16 |
Produktion doppelt seltsamer Hyperonen in ultrarelativistischen Pb+Pb-Kollisionen bei 158 A. GeVGabler, Frank. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1998--Frankfurt (Main). / Erscheinungsjahr an der Haupttitelstelle: 1998.
|
17 |
Energy and system size dependence of X- and X̄+ production in relativistic heavy-ion collisions at the CERN SPSMitrovski, Michael K. Unknown Date (has links)
University, Diss., 2007--Frankfurt (Main). / Zsfassung in engl. und dt. Sprache.
|
18 |
A silicon microstrip detector for COMPASS and a first measurement of the transverse polarization of L0-hyperons from quasi-real photo-productionWiesmann, Michael. Unknown Date (has links)
Techn. University, Diss., 2004--München.
|
19 |
Messung der Reaktionen gp-]K+L und gp-]K+S für Photonenergien bis 2.6 GeV mit dem SAPHIR-Detektor an ELSAGlander, Karl-Heinz. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Bonn.
|
20 |
Electromagnetic form factors of the Sigma*-Lambda transitionVitos, Timea January 2019 (has links)
We introduce and examine the analytic properties of the three electromagnetic transition form factors of the Sigma*-Lambda hyperon transition. In the first part of the thesis, we discuss the interaction Lagrangian for the hyperons at hand. We calculate the decay rate of the Dalitz decay Sigma* Lambda -> e+e- in the one-photon approximation in terms of the form factors, as well as the differential cross section of the scattering e+e- -> Sigma*bar Lambda in the one-photon approximation. In the second part of the thesis, we build up the machinery for calculation of the form factors using dispersion relations, performing an analytic continuation from the timelike, q2 > 0, to the spacelike, q2 < 0, region of the virtual photon invariant mass q2. Due to an anomalous cut in the triangle diagram arising from a two-pion saturation of the photon-hyperon vertex, there is an additional term in the dispersive integral. We use the scalar three-point function as a model for the examination of the dispersive approach with the anomalous cut. The one-loop diagram is calculated both directly and using dispersion relations. After comparison of the two methods, they are found to coincide when the anomalous contribution is added to the dispersive integral in the case of the octet Sigma exchange. By examination of the branch points of the logarithm in the discontinuity, we deduce the structure of the Riemann surface of the unitarity cut and present trajectories of the branch points. The result of our analysis of the analytic structure yields a correct dispersive relation for the electromagnetic transition form factors. This opens the way for the calculation of these form factors in the low-energy region for both space- and timelike q2. As an outlook, we present preliminary calculations for the hyperon-pion scattering amplitude using the unitarity and the anomalous contribution in a once-subtracted dispersion relation. Finally we present the corresponding preliminary unsubtracted dispersive calculations for the form factors.
|
Page generated in 0.0254 seconds