• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Rare-Earth Element Dopants (Sm and Er) Effect on the Ablation Resistance and Emittance Tailoring of ZrB2/SiC Sintered Billets

Angel A Pena (6624245) 14 May 2019 (has links)
<p>Hypersonic flight causes ultra-high surface temperatures which are most intense on sharp leading edges. One way of reducing the surface temperature is to apply a high emittance ceramic (HEC) on the leading edge, increasing the radiation component of heat transfer. An ideal HEC must have a high emittance, while also possessing a strong ablation resistance. From a scientific standpoint, it would be helpful if emittance could be tailored at different wavelengths. For example, materials with tailorable emittance could be used to improve the efficiency of engines, thermo-photo voltaic cells, and other applications. The approach used to create a ceramic with tailorable emittance was to use two different rare-earth elements, adding them to an ultra-high temperature ceramic (UHTC) in small quantities. The samarium element was added to increase the emittance of the UHTC over a large wavelength range (visible to near infrared wavelengths, consistent with the temperature range expected for hypersonic flight), and the erbium element was added to decrease the emittance at specific wavelength ranges. The goal of this study was to create an UHTC with tailorable emittance while maintaining the required ablation resistance. Therefore, ZBS billets with five different Sm to Er ratios and with a nominal total amount of 3 mol.% dopant incorporated were prepared by sintering in vacuum to 2000 °C. The ablation resistance was evaluated by using an oxyacetylene torch and observing at exposure times of 60 s and 300 s, whereas the emittance was evaluated at the Air Force Research Lab facilities via a laser heating testing. The results for the ablation testing showed that ZrB<sub>2</sub>-SiC (ZBS) billets co-doped with Sm and Er formed a beneficial <i>c<sub>1</sub></i>-(Sm/Er)<sub>0.2</sub>Zr<sub>0.8</sub>O<sub>1.9</sub> oxide scale as the majority phase, which is more thermally stable than the <i>m</i>-ZrO<sub>2</sub> oxide scale typically formed in oxidized ZBS systems, resulting in a more adherent oxide scale to the unreacted material. The crystalline oxide scale and the amorphous phase were formed by a convection cell mechanism where the <i>c<sub>1</sub></i>-(Sm/Er)<sub>0.2</sub>Zr<sub>0.8</sub>O<sub>1.9</sub> crystalline islands precipitate, grow, and coalesce. Moreover, differences in surface temperatures between ZBS samples with different dopant ratios suggest differences in spectral absorptance/emittance between each of the five compositions evaluated. Despite that the emittance profiles with varying Sm:Er molar ratios were similar because <i>m</i>-ZrO<sub>2</sub> was formed as the major oxide phase, the emittance study showed that the erbium oxide influences the emittance profile, as can be noted by the maximum and minimum emittance peaks. Furthermore, results showed that the emittance varies as a function of dopant(s) molar ratios and temperature at shorter wavelength ranges. These changes in the emittance are caused by the different Sm and Er concentration on the surface. Future work should be focused on producing the beneficial <i>c<sub>1</sub></i>-(Sm/Er)<sub>0.2</sub>Zr<sub>0.9</sub>O<sub>1.8 </sub>phase directly from the manufacturing process, and therefore, maximize the effect of varying the Sm:Er molar ratios to tailor the emittance. Nonetheless, this study represents the first generation and reported emittance data of UHTC doping ZBS systems with both Sm and Er elements. </p>
2

DEVELOPMENT OF A MICRO-PITOT TRAVERSE SYSTEM FOR PRESSURE MEASUREMENTS IN THE BOEING/AFOSR MACH 6 QUIET TUNNEL

Samuel J Overpeck (12570331) 17 June 2022 (has links)
<p> Hypersonic boundary-layer transition greatly affects aerodynamic heating, skin friction, aircraft stability and other characteristics on flight vehicles. Understanding the factors leading to laminar-turbulent transition is pivotal in hypersonic aircraft design. Various instabilities and modes may facilitate transition at hypersonic speeds including first and second-mode waves, Görtler vortices, and cross-flow which may be stationary or traveling. The research presented here will focus on investigating traveling cross-flow instabilities on a 7° half-angle cone at 6° angle of attack. The experiments were conducted in the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) at Purdue University. The low freestream noise of the quiet tunnel facility made it ideal for studying boundary layer transition due to its more, ”flight like” environment when compared to traditional tunnel environments. Previous experiments by Ryan Henderson, Chris Ward, and Joshua Edelman focused on studying the cross-flow instability on right circular cones at angle of attack (AoA) in the BAM6QT. From these experiments it was decided that a means for taking off-surface pressure measurements on a cone was needed. This work sets out to create a micro-pitot traverse system capable of doing such. The system is able to measure pressure fluctuations within the boundary layer of cone models at precise axial, azimuthal and wall-normal locations. The design for the traverse was based off a traverse used at Notre Dame which was designed by David Cavalieri in his PhD dissertation for Illinois Institute of Technology. Micro-pitot probes created using hypodermic tubing and Kulite sensors were created to attach to the end of the traverse and take pressure measurements. The micro-pitot probes were placed such that they formed two distinct spatial pairs capable of measuring both the phase speed and propagation angle of traveling cross-flow instabilities using the difference in time of arrival of the traveling instability between the sensor pairs. The micro-pitot probes developed were made from telescoped hypodermic tubes housing Kulite XCE-061-15A sensors. The telescoped tubing assembly caused attenuation at higher frequencies affecting the micro-pitot probes ability to measure pressure fluctuations at higher frequencies. It was necessary to increase the dynamic performance of the micro-pitot probes in order to capture the cross-flow instability. To accomplish this a custom built frequency 17 compensator was designed to correct for this attenuation. The process for designing the compensator utilized a Mach 4 supersonic jet system (SSJ) to estimate a transfer function model for the tubing assembly. This was done by comparing the spectral content of an untubed Kulite sensor and a micro-pitot sensor in the SSJ. The transfer function model was then used to develop the compensator improving measurements made with the micro-pitot up to 50 kHz. The micro-pitot traverse system was then used in a series of tests in the BAM6QT to validate its ability to function as designed. The traverse needed to provide a rigid platform for the micro-pitot probes during tunnel operation. The deflection of the pitot head was recorded using a shadowgraph system. This allowed real time measurements for the deflection of the pitot head during tunnel operation to be taken. These measurements were compared to theoretical calculations to ensure deflections were within acceptable limits. Also, of key importance was the survivability of the traverse system after repeated runs in the BAM6QT. This focused on the ability of the traverse to continue providing movement in all three-directions and its ability to resist wear in the tunnel environment. The only cause for concern noted over the course of three tunnel entries centered around the motor used for wall-normal movement. This motor suffered repeated damage impairing the traverses ability to function as intended. Observations regarding this issue and solutions implemented to mitigate the impact of this damage are discussed. Finally, the micro-pitot was combined with the traverse system and used in conjunction with surface mounted sensors on a axisymmetric cone to measure traveling cross-flow instabilities. Damage to Kulites needed for the micro-pitot prohibited three sensors from being used in the tunnel. For this reason only propagation angles and phase speed calculations for traveling cross-flow waves were calculated using the surface mounted sensors. However, one micro-pitot sensor was used to measure spectral content near the surface mounted sensors. The spectral content of the micro-pitot was compared to the surface mounted sensors in order to validate that the micro-pitot could measure the desired instability once more are acquired </p>
3

Using Suction for Laminar Flow Control in Hypersonic Quiet Wind Tunnels: A Feasibility Study

Phillip Portoni (7399604) 16 October 2019 (has links)
<div>To reduce the risk of using suction in a hypersonic quiet-tunnel nozzle design, this project tested micro-perforated suction sections to remove the boundary layer on an axisymmetric model in the Boeing/AFOSR Mach-6 Quiet Tunnel. The model was a cone-flare geometry tested at 0° angle of attack. The turn from the 7° half-angle cone to the flare was designed to prevent flow separation. The flare was designed to amplify the Görtler instability.</div><div><br></div><div>Five suction sections were designed with different perforation patterns and porosities. Four were successfully manufactured, but only the first of the four sections has been tested so far. The first suction section has pores drilled along straight lines with a nominal 5% porosity.</div><div><br></div><div>Measurements were made with temperature-sensitive paint and oil-flow visualization on a non-perforated blank to measure the baseline development of Görtler vortices on the flare. Although the signal-to-noise ratio of the measurement techniques were insufficient to measure the vortices, it was confirmed that the boundary layer is laminar for the entire model. Measurements with suction also did not show the Görtler vortices.</div><div><br></div><div>Surface pressure fluctuations were measured on the flare. Apparent second-mode waves were detected. The suction measurements showed a slight increase in second-mode peak frequency over the baseline results, as expected.</div><div><br></div><div>Concerns had been raised about acoustic noise that might be radiated from the suction section. Thus, fluctuations above the suction section were measured using a pitot probe and using focused-laser differential interferometry. The measurements during suction showed no noticeable increase in fluctuations compared to the baseline results.</div>

Page generated in 0.0886 seconds