1 |
Study of Transition on a Flared Cone with Forced Direct Numerical SimulationAndrew James Shuck (11210940) 10 September 2021 (has links)
High speed boundary layers are an important aspect of vehicle design. It is crucial to know whether the boundary layer is laminar, turbulent, or transitional. The heat transfer rate increases dramatically from laminar to turbulent flow, so it must be considered when designing a high speed vehicle. This thesis studied a flared cone geometry with forced direct numerical simulation. This geometry has experimental data collected from a Mach 6 quiet tunnel and previous computational data. A two stage computational procedure is carried out in order to efficiently model the boundary layer. The first stage involved finding a full cone solution and creating an inlet profile. This inlet profile is imposed on the inlet of a 10-degree sector of the flared cone. This is done to achieve the desired resolution while maintaining reasonable computational costs for the DNS. With this setup, the second stage continues with a high-order basic state computation using the inlet profile. After the higher order basic state is computed, random forcing is applied using traveling plane waves to promote transition and the results are analyzed. Linear stability and frequency analysis is conducted and the unstable frequencies match with expected results. Transition is achieved using the forcing and qualitatively matches previous experimental and computational data for the flared cone. Just as in the experiment and previous computations, regions of primary and secondary streaks are found and have similar heat transfer magnitudes. However, the location of these streaks is different and is likely due to the setup of the computation.
|
2 |
Using Suction for Laminar Flow Control in Hypersonic Quiet Wind Tunnels: A Feasibility StudyPhillip Portoni (7399604) 16 October 2019 (has links)
<div>To reduce the risk of using suction in a hypersonic quiet-tunnel nozzle design, this project tested micro-perforated suction sections to remove the boundary layer on an axisymmetric model in the Boeing/AFOSR Mach-6 Quiet Tunnel. The model was a cone-flare geometry tested at 0° angle of attack. The turn from the 7° half-angle cone to the flare was designed to prevent flow separation. The flare was designed to amplify the Görtler instability.</div><div><br></div><div>Five suction sections were designed with different perforation patterns and porosities. Four were successfully manufactured, but only the first of the four sections has been tested so far. The first suction section has pores drilled along straight lines with a nominal 5% porosity.</div><div><br></div><div>Measurements were made with temperature-sensitive paint and oil-flow visualization on a non-perforated blank to measure the baseline development of Görtler vortices on the flare. Although the signal-to-noise ratio of the measurement techniques were insufficient to measure the vortices, it was confirmed that the boundary layer is laminar for the entire model. Measurements with suction also did not show the Görtler vortices.</div><div><br></div><div>Surface pressure fluctuations were measured on the flare. Apparent second-mode waves were detected. The suction measurements showed a slight increase in second-mode peak frequency over the baseline results, as expected.</div><div><br></div><div>Concerns had been raised about acoustic noise that might be radiated from the suction section. Thus, fluctuations above the suction section were measured using a pitot probe and using focused-laser differential interferometry. The measurements during suction showed no noticeable increase in fluctuations compared to the baseline results.</div>
|
3 |
Characterization of the Quiet Flow Freestream and a Flat Plate Model in the Boeing/AFOSR Mach 6 Quiet TunnelDerek V Mamrol (11711882) 22 November 2021 (has links)
<div>The ambient pressure fluctuations within a wind tunnel test environment can severely affect the boundary layer transition witnessed on test articles The Boeing/AFOSR Mach 6 Quiet Tunnel was designed to minimize these fluctuations, also referred to as noise, and is the world's premier facility for studying hypersonic boundary layer transition in a quiet flow environment. All experiments performed for this work were conducted at this facility.</div><div><br></div><div> </div><div> The freestream flow field of this tunnel has been characterized multiple times since its creation, however an extensive three-dimensional spatial sweep has never been conducted. A pitot rake model was designed to allow for an extensive spatial survey of tunnel noise. This model created measurement capabilities that were previously unknown to the BAM6QT facility, including the ability to take concurrent freestream pitot probe measurements. The performance of this new measurement method was evaluated, and suggestions for future verification tests are made. The pitot rake appears to suffer from probe-probe interactions in certain configurations, and has demonstrated variation in measurements that depends on the individual sensor used.</div><div><br></div><div> </div><div> This new measurement apparatus was used to investigate the effect that cavities in the tunnel wall created by the installation of new optical windows had on the freestream noise level. A control dataset corresponding to a perfectly conformal tunnel wall was not collected during this work. The experiments conducted provide evidence that the tunnel wall cavities do increase the noise downstream of their location by approximately 100%, however a control dataset is needed to verify this finding.</div><div><br></div><div> </div><div> In addition to tunnel characterization, a novel flat plate model was evaluated for use in the BAM6QT. This model was intended for use as a platform for observing second mode instability growth. These experiments show that the initial flat plate geometry proved incompatible with the BAM6QT as the tunnel could not achieve nominal flow conditions with the model installed. The flat plate model was streamlined to rectify the startup issue, but no evidence of the second mode instability was found. A 2.5° half angle cone is being designed to replace the flat plate model as a platform for the continuation of this project.</div>
|
Page generated in 0.019 seconds