• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 47
  • 10
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 336
  • 149
  • 134
  • 113
  • 76
  • 74
  • 63
  • 57
  • 55
  • 48
  • 46
  • 41
  • 40
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Experimental Investigation of a Flush-Walled, Diamond-Shaped Fuel Injector for High Mach Number Scramjets

Grossman, Peter Michael 12 February 2007 (has links)
An experimental investigation of a flush-wall, diamond-shaped injector was conducted in the Virginia Tech supersonic wind tunnel. The diamond injector was elongated in the streamwise direction and is aimed downstream angled up at 60° from the wall. Test conditions involved sonic injection of helium heated to approximately 313 K into a nominal Mach 4.0 crossstream airflow. These conditions are typical of a scramjet engine for a Mach 10 flight, and heated helium was used to safely simulate hydrogen fuel. The injector was tested at two different injectant conditions. First, it was investigated at a baseline mass flow rate of 3.4 g/s corresponding to an effective radius of 3.54 mm and a jet-to-freestream momentum flux ratio of 1.04. Second, a lower mass flow rate of 1.5 g/s corresponding to an effective ratio of 2.35 mm and a jet-to-freestream momentum flux ratio of 0.49 was studied. The diamond injector was tested both aligned with the freestream and at a 15° yaw angle for the baseline mass flow rate and aligned with the freestream at the lower mass flow rate. For comparison, round injectors angled up at 30° from the wall were also examined at both flow rates. A smaller round injector was used at the lower mass flow rate such that the jet-to-freestream momentum flux ratio was 1.75 for both cases. A concentration sampling probe and gas analyzer were used to determine the local helium concentration, while Pitot, cone-static and total temperature probes were used to determine the flow properties. The results of the investigation can be summarized as follows. For the baseline case, the aligned diamond injector penetrated 44% higher into the crossflow than did the round injector. The addition of yaw angle increased the crossflow penetration to 53% higher than the round injector. The aligned diamond injector produced a 34% wider jet than the round injector, while the addition of yaw angle somewhat reduced this widening effect to 26% wider than the round injector. The aligned and yawed diamond injectors exhibited 10% and 15% lower mixing efficiency than the round injector, respectively. The total pressure loss parameter of the aligned diamond was 22% lower than the round injector, while the addition of yaw angle improved the total pressure loss parameter to 34% lower than the round injector. For the lower mass flow (and momentum flux ratio) case, the diamond injector demonstrated 52% higher penetration and a 39% wider plume than the round injector. The mixing efficiency was nearly identical between the two injectors with just a 4% lower mixing efficiency for the diamond injector. The total pressure loss parameter of the diamond injector was 32% lower than round injector. These results confirm the conclusions of earlier, lower free stream Mach number and higher molecular weight injectant, studies that a slender diamond injector provides significant benefits for crossflow penetration and lower total pressure losses. / Master of Science
82

An experimental investigation of the forebody of a hypersonic inlet model and a comparison with theory

Trexler, Carl Arthur January 1971 (has links)
M.S.
83

Aerodynamic characteristics of a hemisphere at hypersonic speeds

Pritchard, Edgar Brian January 1959 (has links)
Master of Science
84

Flux-split algorithms for flows with non-equilibrium chemistry and thermodynamics

Cinnella, Pasquale January 1989 (has links)
New flux-split algorithms are developed for high velocity, high-temperature flow situations, when finite-rate chemistry and non-equilibrium thermodynamics greatly affect the physics of the problem. Two flux-vector-split algorithms, of the Steger-Warming and of the Van Leer type, and one flux-difference-split algorithm of the Roe type are established and utilized for the accurate numerical simulation of flows with dissociation, ionization, and combustion phenomena. Several thermodynamic models are used, including a simplified vibrational non-equilibrium model and an equilibrium model based upon refined statistical mechanics properties. The framework provided is flexible enough to accommodate virtually any chemical model and a wide range of non-equilibrium, multi-temperature thermodynamic models. A theoretical study of the main features of flows with free electrons, for conditions that require the use of two translational temperatures in the thermal model, is developed. Interesting and unexpected results are obtained, because acoustic wave speeds of the symmetric form u±α no longer appear. A simple but powerful asymptotic analysis is developed which allows the establishment of the fundamental gas-dynamic properties of flows with multiple translational temperatures. The new algorithms developed demonstrate their accuracy and robustness for challenging flow problems. The influence of several assumptions on the chemical and thermal behavior of the flows is investigated, and a comparison with results obtained using different numerical approaches, in particular spectral methods, is provided, and proves to be favorable to the present techniques. Other calculations in one and two space dimensions indicate large sensitivities with respect to chemical and thermodynamic modeling. The algorithms developed are of sufficient generality to begin to examine these effects in detail. Preliminary numerical simulations are performed using elementary modeling of transport phenomena. / Ph. D.
85

Manifold design for a high-enthalpy, long-duration high speed wind tunnel

Bailey, Gradon Parker 13 August 2024 (has links) (PDF)
Since the 1940s, the study of supersonic and hypersonic flow has posed significant challenges due to the variable aerodynamic characteristics and alterations in air properties at such high speeds. Hypervelocity wind tunnels have been instrumental in addressing gaps in this field, yet no existing facility can fully replicate true hypersonic conditions. The primary obstacle lies in sustaining the high enthalpies and targeted total conditions necessary for authentic supersonic and hypersonic environments. This paper focuses on the development of a mixing manifold section for a high enthalpy, long-duration hypervelocity wind tunnel designed to provide clean airflow and accurately replicate true hypervelocity conditions for extended run times. Research was done over a wide range of both computational designs and their experimental counterparts to determine the most effective design that replicates the conditions needed for the full wind tunnel.
86

Integration and Evaluation of Unsteady Temperature Gages for Heat Flux Determination in High Speed Flows

Ruda, Mathew Louis 22 June 2022 (has links)
This study documents the integration and testing of a new variety of unsteady surface temperature gages designed to operate in high speed flow. Heat flux through the surface of the test article was determined from the unsteady temperature by applying a 3D reconstruction algorithm based on a Green's function approach. The surface temperature gages used in this work were 1.59 mm inserts designed to maximize material matching with the test article, in this case 316 stainless steel. A series of benchtop experiments were first performed to understand the individual properties of the gage and determine measurement uncertainty. Prior to testing, all temperature gages are calibrated using an environmental chamber. Gages were installed into slugs of several materials and subjected to a heated jet with a total temperature of 620 K to examine the effects of material mismatch. A shock tube with a notional operating Mach of 2.6 was used to determine the thermal response of the gages as a function of time. In both tests, reference Medtherm Schmidt-Boelter gages ensure consistent heat fluxes are applied across all runs. The time response of the entire electrical system was determined by subjecting the gage to a nanosecond scale laser pulse. Two experimental campaigns were conducted in Virginia Tech's Hypersonic Wind Tunnel. First, gages were integrated into a flat plate test article and subjected to a notionally 2D Mach 3 flow. Tunnel total pressures and temperatures ranged from 793-876 kPa and 493-594 K, respectively. A reference 3.18 mm Medtherm Schmidt-Boelter gage was also installed for comparison. All temperature data are reconstructed using the algorithm to determine heat flux. The second test campaign utilized a flat-faced cylindrical test article in a notionally axisymmetric Mach 6 flow environment. Flow total pressures and temperatures ranged from 8375-8928 kPa and 485.5-622 K. respectively. The Fay-Riddell analytical method was applied to the resulting temperature traces in order to infer the heat flux at the stagnation point for comparison with the reconstructed heat flux. This experiment was complimented with steady, 3D CFD in order to understand the temperature variation across the test article. Both campaigns demonstrate good agreement between the heat flux reconstructed from surface temperatures measured using the new gage, reference measurements, and simulations/analytical methods. The importance of material matching is highlighted during this study. The performance of this gage is shown to exceed the current state-of-the-art, opening the possibility for future analysis of phenomenon present in high-speed flow. / Doctor of Philosophy / At very fast speeds, it is important to understand how the temperatures of surfaces change with time. Traditional devices which can measure surface temperatures have a number of weaknesses, and to address these a new type of surface temperature device has been designed. By using computational methods, one can determine how much energy is being transferred through the surface by measuring how the surface temperature changes over time. A series of laboratory experiments were conducted to understand how this new instrument compares to the current state-of-the-art. Two experimental campaigns were then conducted to test the temperature gages. The first experiment used a simple flat plate geometry in a flow 3 times the speed of sound to serve as a benchmark test case, as the flow over a flat plate is well understood. The second test utilized a flat-faced cylindrical test article in a flow 6 times the speed of sound. The results of this test was compared to exact solutions and flow simulations. The result of this study is a well quantified tool to study how energy flows through a body subjected to very high speed flow, which will enable further study of the complicated thermal environments experienced at high speeds.
87

Numerical Simulation of a Flowfield Around a Hypersonic Missile with Lateral Jets

Unknown Date (has links)
This work uses computational fluid dynamics to study the flowfield around a hypersonic missile with two lateral jets to provide control in place of control surfaces. The jets exhaust an H2-O2 mixture at Mach number of 2.9 with a jet pressure ratio of roughly 10,500. The jets are staggered axially and circumferentially in such a way to produce pitch and yaw. The flowfield of such a jet configuration is characterized at several angles of attack and the corresponding force coefficients and amplification factors are provided. The freestream air and H2-O2 plume is treated as inert for the majority of the calculations. Special cases are treated with finite rate chemical kinetics and compared to the inert flowfield to ascertain the effects that chemical reactions have on the force coefficients. It was found that the flowfield was only slightly altered from the familiar one jet flowfield when the second jet is active. The flow topology and vortex structures tend to shift towards the second jet but the overall structure remains the same. The normal force amplification factors are close to unity over the range of angle of attack due to the thrust being so high with the two jet configuration having a lower amplification factor compared to firing a single jet. Treating the flowfield as chemically reacting did not affect the force values much: the difference being 0.3% for an angle of attack of 0°. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
88

Viscous hypersonic flow physics predictions using unstructured Cartesian grid techniques

Sekhar, Susheel Kumar 12 November 2012 (has links)
Aerothermodynamics is an integral component in the design and implementation of hypersonic transport systems. Accurate estimates of the aerodynamic forces and heat transfer rates are critical in trajectory analysis and for payload weight considerations. The present work seeks to investigate the ability of an unstructured Cartesian grid framework in modeling hypersonic viscous flows. The effectiveness of modeling viscous phenomena in hypersonic flows using the immersed boundary ghost cell methodology of this solver is analyzed. The capacity of this framework to predict the surface physics in a hypersonic non-reacting environment is investigated. High velocity argon gas flows past a 2-D cylinder are simulated for a set of freestream conditions (Reynolds numbers), and impact of the grid cell sizes on the quality of the solution is evaluated. Additionally, the formulation is verified over a series of hypersonic Mach numbers for the flow past a hemisphere, and compared to experimental results and empirical estimates. Next, a test case that involves flow separation and the interaction between a hypersonic shock wave and a boundary layer, and a separation bubble is investigated using various adaptive mesh refinement strategies. The immersed boundary ghost cell approach is tested with two temperature clipping strategies, and their impact on the overall solution accuracy and smoothness of the surface property predictions are compared. Finally, species diffusion terms in the conservation equations, and collision cross-section based transport coefficients are installed, and hypersonic flows in thermochemical nonequilibrium environments are studied, and comparisons of the off-surface flow properties and the surface physics predictions are evaluated. First, a 2-D cylinder in a hypersonic reacting air flow is tested with an adiabatic wall boundary condition. Next, the same geometry is tested to evaluate the viscous chemistry prediction capability of the solver with an isothermal wall boundary condition, and to identify the strengths and weaknesses of the immersed boundary ghost cell methodology in computing convective heating rates in such an environment.
89

Instability and Transition on a Sliced Cone with a Finite-Span Compression Ramp at Mach 6

Gregory R McKiernan (8793053) 04 May 2020 (has links)
<div>Initial experiments on separated shock/boundary-layer interactions were carried out within the Boeing/AFOSR Mach-6 Quiet Tunnel. Measurements were made of hypersonic laminar-turbulent transition within the separation above a compression corner. This wind tunnel features freestream fluctuations that are similar to those in</div><div>flight. The present work focuses on the role of traveling instabilities within the shear layer above the separation bubble.</div><div>A 7 degree half-angle cone with a slice and a finite-span compression ramp was designed and tested. Due to a lack of space for post-reattachment sensors, early designs of this</div><div>generic geometry did not allow for measurement of a post-reattachment boundary layer. Oil flow and heat transfer measurements showed that by lengthening the ramp, the post-reattachment boundary layer could be measured. A parametric study was completed to determine that a 20 degree ramp angle caused reattachment at 45% of the</div><div>total ramp length and provided the best flow field for boundary-layer transition measurements.</div><div>Surface pressure fluctuation measurements showed post-reattachment wave packets and turbulent spots. The presence of wave packets suggests that a shear-layer</div><div>instability might be present. Pressure fluctuation magnitudes showed a consistent transition Reynolds numbers of 900000, based on freestream conditions and distance</div><div>from the nosetip. Pressure fluctuations grew exponentially from less than 1% to roughly 10% of tangent-wedge surface pressure during transition.</div><div>A high-voltage pulsed plasma perturber was used to introduce controlled disturbances into the boundary layer. The concept was demonstrated on a straight 7 degree half-angle circular cone. The perturbations successfully excited the second-mode instability at naturally unstable frequencies. The maximum second-mode amplitudes prior to transition were measured to be about 10% of the mean surface static pressure. </div><div>The plasma perturber was then used to disturb the boundary layer just upstream of the separation bubble on the cone with the slice and ramp. A traveling instability was measured post-reattachment but the transition location did not change for any tested condition. It appears that the excited shear-layer instability was not the dominant mechanism of transition.</div>
90

Hypersonic Stationary Crossflow Waves: Receptivity to Roughness

Varun Viswanathan (8032571) 04 December 2019 (has links)
<div>Experiments were performed on a sharp-nosed 7° half-angle cone at a 6° angle of attack in the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) to study the stationary crossflow instability and its receptivity to small surface roughness. Heat transfer measurements were obtained using temperature sensitive paint (TSP) and Schmidt Boelter (SB) heat transfer gauges. Great care was taken to obtain repeatable, quantitative measurements from TSP.</div><div></div><div>Consecutive runs were performed at a 0° angle of attack, and the heat transfer measured by the SB was found to drop as the initial model temperature increased, while other initial conditions such as stagnation pressure were held constant. This agreed with calculations done using a similarity solution. It was found that repeatable measurements at a 6° angle of attack could be made if the initial model temperature was controlled and the patch location that was used to calibrate the TSP was picked in a reasonable and consistent manner.</div><div></div><div>The Rod Insertion Method (RIM) roughness, which was used to excite the stationary crossflow instability, was found to be responsible for the appearance of the streaks that were analyzed. The signal-to-noise ratio in the TSP was too low to properly measure the streaks directly downstream of the roughness insert. The heat transfer along the streak experienced linear growth, peaked, and then slightly decayed. It is possible this peak was saturation. The general trend was that the growth of the streaks moved farther upstream as the roughness element height increased, which agreed with past computations and low speed experiments. The growth of the streak also moved farther upstream as the freestream Reynolds number increased. The amplitude of the streaks was calculated by non-dimensionalizing the heat transfer using the laminar theoretical mean-flow solution for a 7° half-angle cone at a 6° angle of attack. The relationship between the amplitude and the non-dimensional roughness height was approximately linear in the growth region of the streaks.</div>

Page generated in 0.0581 seconds