Spelling suggestions: "subject:"hypersonic."" "subject:"hypersonics.""
51 |
Object-reuse-oriented design of direct simulation Monte-Carlo software for rarefied gas dynamicsParsons, Timothy Langdon January 1999 (has links)
No description available.
|
52 |
Control jets in low density flowWarburton, Keith January 1999 (has links)
No description available.
|
53 |
Experimental Study Of Large Angle Blunt Cone With Telescopic Aerospike Flying At Hypersonic Mach NumbersSrinath, S 12 1900 (has links)
The emerging and competitive environment in the space technology requires the improvements in the capability of aerodynamic vehicles. This leads to the analysis in drag reduction of the vehicle along with the minimized heat transfer rate. Using forward facing solid aerospike is the simplest way among the existing drag reduction methodologies for hypersonic blunt cone bodies. But the flow oscillations associated with this aerospike makes it difficult to implement. When analyzing this flow, it can be understood that this oscillating flow can be compared to conical cavity flow. Therefore in the spiked flows, it is decided to implement the technique used in reducing the flow oscillation of the cavities. Based on this method the shallow conical cavity flow generated by the aerospike fixed ahead of a 120o blunt cone body is fissured as multiple cavities by so many disks formed from 10o cone. Now the deep conical cavities had the length to mean depth ratio of unity; this suppresses the unnecessary oscillations of the shallow cavity. The total length of the telescopic aerospike is fixed as 100mm. And one another conical tip plain aerospike of same length is designed for comparing the telescopic spike’s performance at hypersonic flow Mach numbers of 5.75 and 7.9.
A three component force balance system capable of measuring drag, lift and pitching moment is designed and mounted internally into the skirt of the model. Drag measurement is done for without spike, conical tip plain spiked and telescopic spiked blunt cone body. The three configurations are tested at different angles of attack from 0 to 10 degree with a step of 2. A discrete iterative deconvolution methodology is implemented in this research work for obtaining the clean drag history from the noisy drag accelerometer signal. The drag results showed the drag reduction when compared to the without spike blunt cone body. When comparing to the plain spiked, the telescopic spiked blunt cone body has lesser drag at higher angles of attack.
Heat transfer measurements are done over the blunt cone surface using the Platinum thin film gauges formed over the Macor substrate. These results and the flow visualization give better understanding of the flow and the heat flux rate caused by the flow. The enhancement in the heat flux rate over the blunt cone surface is due to the shock interaction. And in recirculation region the heat flux rate is very much lesser when compared to without spike blunt cone body. It is observed that the shock interaction in the windward side is coming closer towards the nose of the blunt cone as the angle of attack increases and the oscillation of the oblique shock also decreases.
Schlieren visualization showed that there is dispersion in the oblique shock, particularly in the leeward side. In the telescopic spike there are multiple shocks generated from each and every disk which coalesces together to form a single oblique shock. And the effect of the shock generated by the telescopic spike is stronger than the effect of the shock generated by the conical tip plain spike.
|
54 |
Experimental Investigations Of Aerothermodynamics Of A Scramjet Engine ConfigurationHima Bindu, V 11 1900 (has links)
The recent resurgence in hypersonics is centered around the development of SCRAMJET engine technology to power future hypersonic vehicles. Successful flight trials by Australian and American scientists have created interest in the scramjet engine research across the globe. To develop scramjet engine, it is important to study heat transfer effects on the engine performance and aerodynamic forces acting on the body.
Hence, the main aim of present investigation is the design of scramjet engine configuration and measurement of aerodynamic forces acting on the model and heat transfer rates along the length of the combustor. The model is a two-dimensional single ramp model and is designed based on shock-on-lip (SOL) condition. Experiments are performed in IISc hypersonic shock tunnel HST2 at two different Mach numbers of 8 and 7 for different angles of attack. Aerodynamic forces measurements using three-component accelerometer force balance and heat transfer rates measurements using platinum thin film sensors deposited on Macor substrate are some of the shock tunnel flow diagnostics that have been used in this study.
|
55 |
Hypersonic nonequilibrium flow simulations over a blunt body using bgk simulationsJain, Sunny 15 May 2009 (has links)
There has been a continuous effort to unveil the physics of hypersonic flows both
experimentally and numerically, in order to achieve an efficient hypersonic vehicle
design. With the advent of the high speed computers, a lot of focus has been given on
research pertaining to numerical approach to understand this physics. The features of
such flows are quite different from those of subsonic, transonic and supersonic ones and
thus normal CFD methodologies fail to capture the high speed flows efficiently. Such
calculations are made even more challenging by the presence of nonequilibrium
thermodynamic and chemical effects. Thus further research in the field of
nonequilibrium thermodynamics is required for the accurate prediction of such high
enthalpy flows.
The objective of this thesis is to develop improved computational tools for
hypersonic aerodynamics accounting for non-equilibrium effects. A survey of the
fundamental theory and mathematical modeling pertaining to modeling high temperature
flow physics is presented. The computational approaches and numerical methods
pertaining to high speed flows are discussed.
In the first part of this work, the fundamental theory and mathematical modeling pertaining to modeling high temperature flow physics is presented. Continuum based
approach (Navier Stokes) and Boltzmann equation based approach (Gas Kinetic) are
discussed. It is shown mathematically that unlike the most popular continuum based
methods, Gas Kinetic method presented in this work satisfies the entropy condition.
In the second part of this work, the computational approaches and numerical
methods pertaining to high speed flows is discussed. In the continuum methods, the
Steger Warming schemes and Roe’s scheme are discussed. The kinetic approach
discussed is the Boltzmann equation with Bhatnagar Gross Krook (BGK) collision
operator.
In the third part, the results from new computational fluid dynamics code developed
are presented. A range of validation and verification test cases are presented. A
comparison of the two common reconstruction techniques: Green Gauss gradient method
and MUSCL scheme are discussed. Two of the most common failings of continuum
based methods: excessive numerical dissipation and carbuncle phenomenon techniques,
are investigated. It is found that for the blunt body problem, Boltzmann BGK method is
free of these failings.
|
56 |
Characterization of the Influence of a Favorable Pressure Gradient on the Basic Structure of a Mach 5.0 High Reynolds Number Supersonic Turbulent Boundary LayerTichenor, Nathan R. 2010 August 1900 (has links)
High-speed high Reynolds number boundary layer flows with mechanical non-equilibrium effects have numerous practical applications; examples include access-to-space ascent, re-entry and descent, and military hypersonic systems. However, many of the basic turbulent flow processes in this regime are poorly understood and are beyond the realm of modern direct numerical simulations Previous studies have shown that curvature driven pressure gradients significantly alter the state of the turbulence in high-speed boundary layers; the turbulence levels have been shown to decrease by large amounts (up to 100 percent) and the Reynolds shear stress has been shown to change sign. However, most of our understanding is based on point measurement techniques such as hot-wire and Laser Doppler anemometry acquired at low to moderate supersonic Mach numbers (i.e., M = 2-3). After reviewing the available literature, the following scientific questions remain unanswered pertaining to the effect of favorable pressure gradients:
(1) How is state of the mean flow and turbulence statistics altered?
(2) How is the structure of wall turbulence; break-up, stretch or a combination?
(3) How are the Reynolds stress component production mechanisms altered?
(4) What is the effect of Mach number on the above processes?
To answer these questions and to enhance the current database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties using two-dimensional particle image velocimetry (PIV) along with flow visualizations of a high speed (M4.88=), high Reynolds number (Re36,000θ≈) supersonic turbulent boundary layer with curvature-driven favorable pressure gradients (a nominally zero, a weak, and a strong favorable pressure gradient). From these data, detailed turbulence analyses were performed including calculating classical mean flow and turbulence statistics, examining turbulent stress production, and performing quadrant decomposition of the Reynolds stress for each pressure gradient case.
It was shown that the effect of curvature-driven favorable pressure gradients on the turbulent structure of a supersonic boundary layer was significant. For the strong pressure gradient model, the turbulent shear stress changed sign throughout the entire boundary layer; a phenomena was not observed to this magnitude in previous studies. Additionally, significant changes were seen in the turbulent structure of the boundary layer. It is believed that hairpin vortices organized within the boundary layer are stretched and then broken up over the favorable pressure gradient. Energy from these hairpin structures is transferred to smaller turbulent eddies as well as back into the mean flow creating a fuller mean velocity profile. It was determined that the effects of favorable pressure gradients on the basic structure of a turbulent Mach 5.0 boundary layer were significant, therefore increasing the complexity of computational modeling.
|
57 |
Investigations On Film Cooling At Hypersonic Mach Number Using Forward Facing Injection From Micro-Jet ArraySriram, R 01 August 2008 (has links)
A body in a hypersonic flow field will experience very high heating especially during re-entry. Conventionally this problem is tackled to some extent by the use of large angle
blunt cones. At the cost of increased drag, the heat transfer rate is lower over most parts of the blunt body, except in a region around the stagnation point. Thus even with blunt cones, management of heat transfer rates and drag on bodies at hypersonic speeds
continues to be an interesting research area. Various thermal protection systems have
been proposed in the past, like heat sink cooling, ablation cooling and aerospikes. The
ablative cooling system becomes extremely costly when reusability is the major concern.
Also the shape change due to ablation can lead to issues with the vehicle control. The
aerospikes themselves may become hot and ablate at hypersonic speeds. Hence an
alternate form of cooling system is necessary for hypersonic flows, which is more
feasible, cost effective and efficient than the conventional cooling systems.
Injection of a mass of cold fluid into the boundary layer through the surface is one
of the potential cooling techniques in the hypersonic flight corridors. These kinds of
thermal protection systems are called mass transfer cooling systems. The injection of the mass may be through discrete slots or through a porous media. When the coolant is
injected through a porous media over the entire surface, the coolant comes out as a
continuous mass. Such a cooling system is also referred as “transpiration cooling
system”. When the fluid is injected through discrete slots, the system is called as “film
cooling system”. In either case, the coolant absorbs the incoming heat through its rise in
enthalpy and thus modifies the boundary layer characteristics in such a way that the heat flow rate to the surface is less. Injection of a forward facing jet (opposite to the freestream direction) from the stagnation point of a blunt body can be used for mitigating both the aerodynamic drag and heat transfer rates at hypersonic Mach numbers. If the jet has enough momentum it can push the bow shock forward, resulting in reduced drag. This will also reduce heat transfer rate over most part of the body except around the jet re-attachment region. A reattachment shock impinging on the blunt body invariably increases the local heat flux. At lower momentum fluxes the forward facing jet cannot push the bow shock ahead of the blunt body and spreads easily over the boundary layer, resulting in reduced heat transfer rates. While the film cooling performance improves with mass flow rate of the jet, higher momentum flow rates can lead to a stronger reattachment leading to higher heat transfer rate at the reattachment zone. If we are able to reduce the momentum flux of the coolant for the same mass flow rate, the gas coming out can easily spread over the boundary layer and it is possible to improve the film cooling performance.
In all the reported literature, the mass flow rate and the momentum flux are not
varied independently. This means, if the mass flow rate is increased, there is a
corresponding increase in the momentum flux. This is because the injection (from a
particular orifice and for a particular coolant gas) is controlled only by the total pressure of injection and free stream conditions. The present investigation is mainly aimed at demonstrating the effect of reduction in momentum of the coolant (injected opposing a hypersonic freestream from the stagnation point of a blunt cone), keeping the mass flow rate the same, on the film cooling performance. This is achieved by splitting a single jet into a number of smaller jets of same injection area (for same injection total pressure and same free stream conditions). To the best of our knowledge there is no report on the use
of forward facing micro-jet array for film cooling at hypersonic Mach numbers. In this
backdrop the main objectives of the present study are:
• To experimentally demonstrate the effect of splitting a single jet into an array of closely spaced smaller micro-jets of same effective area of injection (injected opposite to a hypersonic freestream from the stagnation zone), on the reduction in surface heat transfer rates on a large angle blunt cone.
· Identifying various parameters that affect the flow phenomenon and doing a systematic investigation of the effect of the different parameters on the surface heat transfer rates and drag.
Experimental investigations are carried out in the IISc hypersonic shock tunnel on
the film cooling effectiveness. Coolant gas (nitrogen and helium) is injected opposing
hypersonic freestream as a single jet (diameter 2 mm and 0.9 mm), and as an array of iv micro jets (diameter 300 micron each) of same effective area (corresponding to the
respective single jet). The coolant gas is injected from the stagnation zone of a blunt cone model (58o apex angle and nose radius of 35 mm). Experiments are performed at a flow freestream Mach number of 5.9 at 0o angle of attack, with a stagnation enthalpy of 1.84 MJ/Kg, with and without injections. The ratios of the jet stagnation pressure to the pitot pressure (stagnation pressure ratio) used in the present study are 1.2 and 1.45. Surface convective heat transfer measurements using platinum thin film sensors, time resolved schlieren flow visualization and aerodynamic drag measurements using accelerometer force balance are used as flow diagnostics in the present study. The theoretical stagnation
point heat transfer rate without injection for the given freestream conditions for the test model is 79 W/cm2 and the corresponding aerodynamic drag from Newtonian theory is
143 N. The measured drag value without injection (125 N) shows a reasonable match
with theory. As the injection is from stagnation zone it is not possible to measure the surface heat transfer rates at the stagnation point. The sensors thus are placed from the nearest possible location from the stagnation point (from 16 mm from stagnation point on the surface). The sensors near the stagnation point measures a heat transfer rate of 65 W/cm2 on an average without any injection. Some of the important conclusions from the study are:
• Up to 40% reduction in surface heat transfer rate has been measured near the
stagnation point with the array of micro jets, nitrogen being the coolant, while the
corresponding reduction was up to 30% for helium injection. Considering the single jet injection, near the stagnation point there is either no reduction in heat transfer rate or a slight increase up to 10%.
· Far away from stagnation point the reduction in heat transfer with array of micro-jets is only slightly higher than corresponding single jet for the same pressure ratio. Thus the cooling performance of the array of closely spaced micro jets is
better than the corresponding single jet almost over the entire surface.
• The time resolved flow visualization studies show no major change in the shock
standoff distance with the low momentum gas injection, indicating no major changes in other aerodynamic aspects such as drag.
· The drag measurements also indicate that there is virtually no change in the overall aerodynamic drag with gas injection from the micro-orifice array.
· The spreading of the jets injected from the closely spaced micro-orifice array over
the surface is also seen in the visualization, indicating the absence of a region of strong reattachment.
· The reduction in momentum flux of the injected mass due to the interaction
between individual jets in the case of closely spaced micro-jet array appears to be
the main reason for better performance when compared to a single jet.
The thesis is organized in six chapters. The importance of film cooling at hypersonic speeds and the objectives of the investigation are concisely presented in
Chapter 1. From the knowledge of the flow field with counter-flow injection obtained
from the literature, the important variables governing the flow phenomena are organized
as non-dimensional parameters using dimensional analysis in Chapter 2. The description of the shock tunnel facility, diagnostics and the test model used in the present study is given in Chapter 3. Chapter 4 describes the results of drag measurements and flow visualization studies. The heat transfer measurements and the observed trends in heat transfer rates with and without coolant injection are then discussed in detail in Chapter 5. Based on the obtained results the possible physical picture of the flow field is discussed
in Chapter 6, followed by the important conclusions of the investigation.
|
58 |
A numerical investigation of flowfield modification in high-speed airbreathing inlets using energy depositionRohweder, Matthew Flynn, January 2010 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2010. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed Jan. 5, 2010). Includes bibliographical references (p. 52-53).
|
59 |
Modelling low-density flow in hypersonic impulse facilities /Wheatley, Vincent. January 2001 (has links) (PDF)
Thesis (M. Eng. Sc.)--University of Queensland, 2001. / Includes bibliographical references.
|
60 |
Ablation onset in unsteady hypersonic flow about nose-tips with a forward-facing cavitySilton, Sidra Idelle, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references. Available also from UMI Company.
|
Page generated in 0.0616 seconds