• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hypersonic nonequilibrium flow simulations over a blunt body using bgk simulations

Jain, Sunny 15 May 2009 (has links)
There has been a continuous effort to unveil the physics of hypersonic flows both experimentally and numerically, in order to achieve an efficient hypersonic vehicle design. With the advent of the high speed computers, a lot of focus has been given on research pertaining to numerical approach to understand this physics. The features of such flows are quite different from those of subsonic, transonic and supersonic ones and thus normal CFD methodologies fail to capture the high speed flows efficiently. Such calculations are made even more challenging by the presence of nonequilibrium thermodynamic and chemical effects. Thus further research in the field of nonequilibrium thermodynamics is required for the accurate prediction of such high enthalpy flows. The objective of this thesis is to develop improved computational tools for hypersonic aerodynamics accounting for non-equilibrium effects. A survey of the fundamental theory and mathematical modeling pertaining to modeling high temperature flow physics is presented. The computational approaches and numerical methods pertaining to high speed flows are discussed. In the first part of this work, the fundamental theory and mathematical modeling pertaining to modeling high temperature flow physics is presented. Continuum based approach (Navier Stokes) and Boltzmann equation based approach (Gas Kinetic) are discussed. It is shown mathematically that unlike the most popular continuum based methods, Gas Kinetic method presented in this work satisfies the entropy condition. In the second part of this work, the computational approaches and numerical methods pertaining to high speed flows is discussed. In the continuum methods, the Steger Warming schemes and Roe’s scheme are discussed. The kinetic approach discussed is the Boltzmann equation with Bhatnagar Gross Krook (BGK) collision operator. In the third part, the results from new computational fluid dynamics code developed are presented. A range of validation and verification test cases are presented. A comparison of the two common reconstruction techniques: Green Gauss gradient method and MUSCL scheme are discussed. Two of the most common failings of continuum based methods: excessive numerical dissipation and carbuncle phenomenon techniques, are investigated. It is found that for the blunt body problem, Boltzmann BGK method is free of these failings.
2

Aspectos analíticos e computacionais do método de ordenadas discretas para o modelo BGK linearizado

Rodrigues, Patricia January 1998 (has links)
Neste trabalho duas soluções em ordenadas discretas são propostas para problemas da dinâmica de gases rarefeitos, em meio finito e semi-infinito, abordados segundo o modelo BGK linearizado. As duas versões utilizam os chamados "halfrange" esquemas de quadratura, no entanto os dois casos diferem basicamente na avaliação, analítica ou numérica, das soluções elementares do sistema de equações em ordenadas discretas. Ainda um problema de autovalores simplificado, baseado em matrizes que são perturbações de matrizes de posto um, resulta nas duas abordagens e é tratado a partir de rotinas específicas. Resultados numéricos são apresentados. / In this work two discrete ordinates solutions are developed to solve a class of problems in the theory of rarefied gas dynamics, in finite and semi-infinite media: described by the linearized BGK model. The two methods use half-range quadrature schemes and are based on the use of either analytical or numerical approaches to evaluate the clementary solutions of the discrete ordinates equations. The addition, the approaches present a simpler associated eigenvalue problem based on matrices that are diagonal perturbations of rank-one matrices. Numerical results are presented.
3

Aspectos analíticos e computacionais do método de ordenadas discretas para o modelo BGK linearizado

Rodrigues, Patricia January 1998 (has links)
Neste trabalho duas soluções em ordenadas discretas são propostas para problemas da dinâmica de gases rarefeitos, em meio finito e semi-infinito, abordados segundo o modelo BGK linearizado. As duas versões utilizam os chamados "halfrange" esquemas de quadratura, no entanto os dois casos diferem basicamente na avaliação, analítica ou numérica, das soluções elementares do sistema de equações em ordenadas discretas. Ainda um problema de autovalores simplificado, baseado em matrizes que são perturbações de matrizes de posto um, resulta nas duas abordagens e é tratado a partir de rotinas específicas. Resultados numéricos são apresentados. / In this work two discrete ordinates solutions are developed to solve a class of problems in the theory of rarefied gas dynamics, in finite and semi-infinite media: described by the linearized BGK model. The two methods use half-range quadrature schemes and are based on the use of either analytical or numerical approaches to evaluate the clementary solutions of the discrete ordinates equations. The addition, the approaches present a simpler associated eigenvalue problem based on matrices that are diagonal perturbations of rank-one matrices. Numerical results are presented.
4

Aspectos analíticos e computacionais do método de ordenadas discretas para o modelo BGK linearizado

Rodrigues, Patricia January 1998 (has links)
Neste trabalho duas soluções em ordenadas discretas são propostas para problemas da dinâmica de gases rarefeitos, em meio finito e semi-infinito, abordados segundo o modelo BGK linearizado. As duas versões utilizam os chamados "halfrange" esquemas de quadratura, no entanto os dois casos diferem basicamente na avaliação, analítica ou numérica, das soluções elementares do sistema de equações em ordenadas discretas. Ainda um problema de autovalores simplificado, baseado em matrizes que são perturbações de matrizes de posto um, resulta nas duas abordagens e é tratado a partir de rotinas específicas. Resultados numéricos são apresentados. / In this work two discrete ordinates solutions are developed to solve a class of problems in the theory of rarefied gas dynamics, in finite and semi-infinite media: described by the linearized BGK model. The two methods use half-range quadrature schemes and are based on the use of either analytical or numerical approaches to evaluate the clementary solutions of the discrete ordinates equations. The addition, the approaches present a simpler associated eigenvalue problem based on matrices that are diagonal perturbations of rank-one matrices. Numerical results are presented.
5

Efficient Asymptotic Preserving Schemes for BGK and ES-BGK models on Cartesian grids / Schémas préservant la limite asymptotique pour les modèles BGK et ES-BGK sur grilles cartésiennes

Bernard, Florian 09 March 2015 (has links)
Dans cette thèse, nous nous sommes intéressés à des écoulements complexes où les régimes hydrodynamique et raréfiés coexistent. On retrouve ce type d'écoulements dans des applications industrielles comme les pompes à vide ou encore les rentrées de capsules spatiales dans l'atmosphère, lorsque la distance entre les molécules de gaz devient si grande que le comportement microscopique des molécules doit être pris en compte. Pour ce faire, nous étudions 2 modèles de l'équation de Boltzmann, le modèle BGK et le modèle ES-BGK. Dans un premier temps, nous développons une nouvelle condition au bord permettant une transition continue de la solution du régime raréfié vers le régime hydrodynamique. Cette nouvelle condition permettant de préserver l'asymptotique vers les équations d'Euler compressible est ensuite incluse dans une méthode de frontière immergée pour traiter, à une précision raisonnable (ordre 2), le cas de solides immergés dans un écoulement, sur grilles cartésiennes. L'utilisation de grillescartésiennes permet une parallélisation aisée du code de simulation numérique afin d'obtenir une réduction considérable du temps de calcul, un des principaux inconvénients des modèles cinétiques. Par la suite, une approche dites aux grilles locales en vitesses est présentée réduisant également le temps de calcul de manière importante (jusqu'à 80%). Des simulations 3D sont également présentées montrant l'efficacité des méthodes. Enfin, le transport passive de particules solides dans un écoulement raréfié est étudié avec l'introduction d'un modèle de type Vlasov couplé au modèle cinétique. Grâce à une résolution basée sur des méthodes de remaillage, la pollution de dispositif optiques embarqués sur des satellites dues à des particules issues de la combustion incomplète dans les moteurs contrôlant d'altitude est étudiée. / This work is devoted to the study of complex flows where hydrodynamic and rarefled regimes coexist. This kind of flows are found in vacuum pumps or hypersonic re-entries of space vehicles where the distance between gas molecules is so large that their microscopicbehaviour differ from the average behaviour of the flow and has be taken into account. We then consider two modelsof the Boltzmann equation viable for such flows: the BGK model dans the ES-BGK model.We first devise a new wall boundary condition ensuring a smooth transition of the solution from the rarefled regime to the hydrodynamic regime. We then describe how this boundary condition (and boundary conditions in general) can be enforced with second order accuracy on an immersed body on Cartesian grids preserving the asymptotic limit towards compressible Euler equations. We exploit the ability of Cartesian grids to massive parallel computations (HPC) to drastically reduce the computational time which is an issue for kinetic models. A new approach considering local velocity grids is then presented showing important gain on the computational time (up to 80%). 3D simulations are also presented showing the efficiency of the methods. Finally, solid particle transport in a rarefied flow is studied. The kinetic model is coupled with a Vlasov-type equation modeling the passive particle transport solved with a method based on remeshing processes. As application, we investigate the realistic test case of the pollution of optical devices carried by satellites due to incompletely burned particles coming from the altitude control thrusters
6

Numerical simulation of rarefied gas flows based on the kinetic approach / Simulation numérique de l'écoulement de gaz raréfiés sur la base des équations cinétiques modèles

Polikarpov, Alexey 27 October 2011 (has links)
Ce travail de thèse porte sur le développement de la méthode des vitesses discrètes pour la résolution numérique de équations cinétiques modèles, BGK, S modèle et ES modèle, qui représentent les différentes approximations de l’équation de Boltzmann. / This work is devoted to the development of the numerical resolution of the kinetic model equations such as BGK, S-model, ES-model by the discrete velocity method. The different approximations of the Boltzmann equation are presented
7

Um modelo de dinâmica de gases rarefeitos com frequência de colisão variável

Bartz, Anne Cristine Rutsatz January 2000 (has links)
Neste trabalho, uma versão recente do método de ordenadas discretas é usada na solução do chamado problema de salto de temperatura da dinâmica de gases rarefeitos, descrito por um modelo linearizado, com freqüência de colisão variável, da equação de Boltzmann. Duas abordagens de tratamento do problema são apresentadas, ditas escalar e vetorial, para o caso onde a freqüência de colisão é proporcional à magnitude do vetor velocidade. Resultados numéricos de excelente precisão são obtidos, para perturbação de temperatura, densidade e coeficiente de salto, com avaliação analítica e numérica da componente independente da variável espacial das soluções elementares, pela implementação de um algoritmo em linguagem FORTRAN da solução em ordenadas discretas. / In this work, a recent version of the discrete-ordinates method is used in the field of rarefied-gas dynamics, to solve a version of the temperature-jump problem that is based on a linearized, variable collision frequency model of the Boltzmann equation. Two different approaches are used, the so-called scalar and vector solutions, for the case where the collision frequency is proportional to the magnitude of the velocity. Accurate numerical results are obtained from the FORTRAN implementation of the developed solution, by using analytical and numerical spatial-independent components of the elementary solutions, for the temperature and density perturbations and the temperature-jump coefficient.
8

Um modelo de dinâmica de gases rarefeitos com frequência de colisão variável

Bartz, Anne Cristine Rutsatz January 2000 (has links)
Neste trabalho, uma versão recente do método de ordenadas discretas é usada na solução do chamado problema de salto de temperatura da dinâmica de gases rarefeitos, descrito por um modelo linearizado, com freqüência de colisão variável, da equação de Boltzmann. Duas abordagens de tratamento do problema são apresentadas, ditas escalar e vetorial, para o caso onde a freqüência de colisão é proporcional à magnitude do vetor velocidade. Resultados numéricos de excelente precisão são obtidos, para perturbação de temperatura, densidade e coeficiente de salto, com avaliação analítica e numérica da componente independente da variável espacial das soluções elementares, pela implementação de um algoritmo em linguagem FORTRAN da solução em ordenadas discretas. / In this work, a recent version of the discrete-ordinates method is used in the field of rarefied-gas dynamics, to solve a version of the temperature-jump problem that is based on a linearized, variable collision frequency model of the Boltzmann equation. Two different approaches are used, the so-called scalar and vector solutions, for the case where the collision frequency is proportional to the magnitude of the velocity. Accurate numerical results are obtained from the FORTRAN implementation of the developed solution, by using analytical and numerical spatial-independent components of the elementary solutions, for the temperature and density perturbations and the temperature-jump coefficient.
9

Um modelo de dinâmica de gases rarefeitos com frequência de colisão variável

Bartz, Anne Cristine Rutsatz January 2000 (has links)
Neste trabalho, uma versão recente do método de ordenadas discretas é usada na solução do chamado problema de salto de temperatura da dinâmica de gases rarefeitos, descrito por um modelo linearizado, com freqüência de colisão variável, da equação de Boltzmann. Duas abordagens de tratamento do problema são apresentadas, ditas escalar e vetorial, para o caso onde a freqüência de colisão é proporcional à magnitude do vetor velocidade. Resultados numéricos de excelente precisão são obtidos, para perturbação de temperatura, densidade e coeficiente de salto, com avaliação analítica e numérica da componente independente da variável espacial das soluções elementares, pela implementação de um algoritmo em linguagem FORTRAN da solução em ordenadas discretas. / In this work, a recent version of the discrete-ordinates method is used in the field of rarefied-gas dynamics, to solve a version of the temperature-jump problem that is based on a linearized, variable collision frequency model of the Boltzmann equation. Two different approaches are used, the so-called scalar and vector solutions, for the case where the collision frequency is proportional to the magnitude of the velocity. Accurate numerical results are obtained from the FORTRAN implementation of the developed solution, by using analytical and numerical spatial-independent components of the elementary solutions, for the temperature and density perturbations and the temperature-jump coefficient.
10

Optimisation, analyse et comparaison de méthodes numériques déterministes par la dynamique des gaz raréfiés / Optimization, analysis and comparison of deterministic numerical methods for rarefied gas dynamics

Herouard, Nicolas 05 December 2014 (has links)
Lors de la rentrée atmosphérique, l’écoulement raréfié de l’air autour de l’objet rentrant est régi par un modèle cinétique dérivé de l’équation de Boltzmann ; celui-ci décrit l’évolution d’une fonction de distribution des particules de gaz dans l’espace des phases, de dimension 6 dans le cas général. La simulation numérique déterministe de cet écoulement requiert donc le traitement d’une quantité considérable de données, soit un espace mémoire et un temps de calcul importants. Nous étudions dans ce travail différents moyens de réduire le coût de ces calculs. La première approche est une méthode permettant d’optimiser la taille de la grille de vitesses discrètes employée dans le calcul par une prédiction de l’allure des fonctions de distribution dans l’espace des vitesses, en supposant un faible déséquilibre thermodynamique du gaz. La seconde approche consiste à essayer d’exploiter les propriétés de préservation asymptotique des schémas Galerkin Discontinu, déjà établies dans le cadre du transport linéaire des neutrons, qui permettent de tenir compte des effets de la couche limite cinétique sans que celle-ci soit résolue par le maillage, alors que les méthodes classiques (comme les Volumes Finis) imposent l’utilisation de maillages très raffinés en zone de proche paroi. Dans une dernière partie, nous comparons les performances respectives de ces schémas Galerkin Discontinu et de quelques schémas Volumes Finis, appliqués au modèle BGK sur un cas simple, en étudiant en particulier leur comportement près des parois et les conditions aux limites numériques. / During the atmospheric re-entry of a space engine, the rarefied air flow around the body is determined by a kinetic model derived from the Boltzmann equation, which describes the evolution of a distribution function of gas molecules in the phase space, this means a 6-dimensional space in the general case. Consequently, a deterministic numerical simulation of this flow requires large computational ressources, both in memory storage and CPU time. The aim of this work is to reduce those ressources, using two different approaches. The first one is a method allowing to optimize the size of the discrete velocity grid used for the computation by a prediction of the shape of the distributions in the velocity space, assuming that the gas is close to thermodynamic equilibrium. The second approach is an attempt to use the asymptotic preservation properties of Discontinuous Galerkin schemes, already established for neutron transport, which allow to take into account the effects of kinetic boundary layers even if they are not resolved by the mesh, while classical methods (such as Finite Volumes) require very refined meshes along the direction normal to the walls. In a last part, we compare the performances of these Discontinuous Galerkin schemes with some classical Finite Volumes schemes, applied to the BGK equation in a simple case, and pay particular attention to their near-wall behavior and numerical boundary conditions.

Page generated in 0.1478 seconds