Spelling suggestions: "subject:"grilles cartésienne"" "subject:"grilles bayésiennes""
1 |
Méthode d'assemblage de maillages recouvrants autour de géométries complexes pour des simulations en aérodynamique compressible / Overset grid assembly method for simulations over complex geometries for compressible flows in aerodynamicsPeron, Stephanie 02 October 2014 (has links)
La simulation numérique des écoulements (CFD) est largement utilisée aujourd'hui dans l'industrie aéronautique, de l'avant-projet à la conception des appareils. En parallèle, la puissance des calculateurs s'est accrue, permettant d'effectuer des simulations résolvant les équations de Navier-Stokes moyennées (RANS) dans un délai de restitution acceptable du point de vue industriel. Cependant, les configurations simulées sont de plus en plus complexes géométriquement, rendant la réalisation du maillage très coûteuse en temps humain. Notre objectif est de proposer une méthode permettant de simplifier la génération de maillages autour de géométries complexes, en exploitant les avantages de la méthode Chimère, tout en levant les difficultés principales rencontrées par cette méthode dans le calcul des connectivités. Dans notre approche, le domaine de calcul est découpé en régions proches et en régions éloignées des corps. Des grilles curvilignes de faible extension décrivent les régions autour des corps. Le maillage de fond est défini par un ensemble de grilles cartésiennes superposées aux grilles de corps, qui sont engendrées et adaptées automatiquement selon les caractéristiques de l'écoulement. Afin de traiter des maillages recouvrants autour de géométries complexes sans surcoût humain, les différentes grilles sont regroupées par composant Chimère. Des relations d'assemblage sont alors définies entre composants, en s'inspirant de la Géométrie de Construction des Solides (CSG), où un solide peut être construit par opérations booléennes successives entre solides primitifs. Le calcul des connectivités Chimère est alors réalisé de manière simplifiée. Des simulations RANS sont effectuées autour d'un fuselage d'hélicoptère avec mât de soufflerie et autour d'une aile NACA0015 en incidence, afin de mettre en oeuvre la méthode. / Computational fluid dynamics (CFD) is widely used today in aeronautics, while the computing power has increased, enabling to perform simulations solving Reynolds-averaged Navier-Stokes equations (RANS) within an acceptable time frame from the industrial point of view. However, the configurations are more and more geometrically complex, making the mesh generation step prohibitive. Our aim is here to propose a method enabling a simplification of the mesh generation over complex geometries, taking advantage of the Chimera method and overcoming the major difficulties arising when performing overset grid connectivity. In our approach, the computational domain is partitioned into near-body regions and off-body regions. Near-body regions are meshed by curvilinear grids of short extension describing the obstacles involved in the simulation. Off-body mesh is defined by a set of adaptive Cartesian grids, overlapping near-body grids. In order to consider overset grids over complex geometries with no additional cost, grids are gathered by Chimera component, and assembly relations are defined between them, inspired by Constructive Solid Geometry, where a solid can result from boolean operations between primitive solids. The overset grid connectivity is thus simplified. RANS simulations are performed over a helicopter fuselage with a strut, and over a NACA0015 wing.
|
2 |
Efficient Asymptotic Preserving Schemes for BGK and ES-BGK models on Cartesian grids / Schémas préservant la limite asymptotique pour les modèles BGK et ES-BGK sur grilles cartésiennesBernard, Florian 09 March 2015 (has links)
Dans cette thèse, nous nous sommes intéressés à des écoulements complexes où les régimes hydrodynamique et raréfiés coexistent. On retrouve ce type d'écoulements dans des applications industrielles comme les pompes à vide ou encore les rentrées de capsules spatiales dans l'atmosphère, lorsque la distance entre les molécules de gaz devient si grande que le comportement microscopique des molécules doit être pris en compte. Pour ce faire, nous étudions 2 modèles de l'équation de Boltzmann, le modèle BGK et le modèle ES-BGK. Dans un premier temps, nous développons une nouvelle condition au bord permettant une transition continue de la solution du régime raréfié vers le régime hydrodynamique. Cette nouvelle condition permettant de préserver l'asymptotique vers les équations d'Euler compressible est ensuite incluse dans une méthode de frontière immergée pour traiter, à une précision raisonnable (ordre 2), le cas de solides immergés dans un écoulement, sur grilles cartésiennes. L'utilisation de grillescartésiennes permet une parallélisation aisée du code de simulation numérique afin d'obtenir une réduction considérable du temps de calcul, un des principaux inconvénients des modèles cinétiques. Par la suite, une approche dites aux grilles locales en vitesses est présentée réduisant également le temps de calcul de manière importante (jusqu'à 80%). Des simulations 3D sont également présentées montrant l'efficacité des méthodes. Enfin, le transport passive de particules solides dans un écoulement raréfié est étudié avec l'introduction d'un modèle de type Vlasov couplé au modèle cinétique. Grâce à une résolution basée sur des méthodes de remaillage, la pollution de dispositif optiques embarqués sur des satellites dues à des particules issues de la combustion incomplète dans les moteurs contrôlant d'altitude est étudiée. / This work is devoted to the study of complex flows where hydrodynamic and rarefled regimes coexist. This kind of flows are found in vacuum pumps or hypersonic re-entries of space vehicles where the distance between gas molecules is so large that their microscopicbehaviour differ from the average behaviour of the flow and has be taken into account. We then consider two modelsof the Boltzmann equation viable for such flows: the BGK model dans the ES-BGK model.We first devise a new wall boundary condition ensuring a smooth transition of the solution from the rarefled regime to the hydrodynamic regime. We then describe how this boundary condition (and boundary conditions in general) can be enforced with second order accuracy on an immersed body on Cartesian grids preserving the asymptotic limit towards compressible Euler equations. We exploit the ability of Cartesian grids to massive parallel computations (HPC) to drastically reduce the computational time which is an issue for kinetic models. A new approach considering local velocity grids is then presented showing important gain on the computational time (up to 80%). 3D simulations are also presented showing the efficiency of the methods. Finally, solid particle transport in a rarefied flow is studied. The kinetic model is coupled with a Vlasov-type equation modeling the passive particle transport solved with a method based on remeshing processes. As application, we investigate the realistic test case of the pollution of optical devices carried by satellites due to incompletely burned particles coming from the altitude control thrusters
|
Page generated in 0.0982 seconds