Spelling suggestions: "subject:"hyperspectral images"" "subject:"hyperspectrale images""
1 |
Mitigating discontinuities in segmented Karhunen-Loeve TransformsStadnicka, Monika, Blanes, Ian, Serra-Sagrista, Joan, Marcellin, Michael W. 09 1900 (has links)
The Karhunen-Loeve Transform (KLT) is a popular transform used in multiple image processing scenarios. Sometimes, the application of the KLT is not carried out as a single transform over an entire image Rather, the image is divided into smaller spatial regions (segments), each of which is transformed by a smaller dimensional KLT. Such a situation may penalize the transform efficiency. An improvement for the segmented KLT, aiming at mitigating discontinuities arising on the edge of adjacent regions, is proposed in this paper. In the case of moderately varying image regions, discontinuities occur as the consequence of disregarded similarity between transform domains, as the order and sign of eigenvectors in the transform matrices are mismatched. In the proposed method, the KLT is adjusted to guarantee the best achievable similarity via the optimal assignment and sign correspondence for eigenvectors. Experimental results indicate that the proposed transform improves the similarity between transform domains, and reduces RMSE on the edge of adjacent regions. In consequence, images processed by the adjusted KLT present better cohesion and continuity between independently transformed regions.
|
2 |
Regression Wavelet Analysis for Lossless Coding of Remote-Sensing DataMarcellin, Michael W., Amrani, Naoufal, Serra-Sagristà. Joan, Laparra, Valero, Malo, Jesus 08 May 2016 (has links)
A novel wavelet-based scheme to increase coefficient
independence in hyperspectral images is introduced for lossless
coding. The proposed regression wavelet analysis (RWA) uses
multivariate regression to exploit the relationships among wavelettransformed
components. It builds on our previous nonlinear
schemes that estimate each coefficient from neighbor coefficients.
Specifically, RWA performs a pyramidal estimation in the wavelet
domain, thus reducing the statistical relations in the residuals
and the energy of the representation compared to existing
wavelet-based schemes. We propose three regression models to
address the issues concerning estimation accuracy, component
scalability, and computational complexity. Other suitable regression
models could be devised for other goals. RWA is invertible, it
allows a reversible integer implementation, and it does not expand
the dynamic range. Experimental results over a wide range of
sensors, such as AVIRIS, Hyperion, and Infrared Atmospheric
Sounding Interferometer, suggest that RWA outperforms not only
principal component analysis and wavelets but also the best and
most recent coding standard in remote sensing, CCSDS-123.
|
3 |
Klasifikace smrkových porostů s využitím obrazové a laboratorní spektroskopie / Classification of Norway Spruce based on imaging and laboratory spectroscopySoudková, Kristýna January 2014 (has links)
The master thesis deals with subpixel classification of hyperspectral data from senzor APEX. In the first part there is research from the literature describing algorithms of the subpixel classifications and spectral characteristics of the vegetation. In the practical part there is a work focusing on the classification of the areas with the cover of Norway Spruce trees at eight areas in the Krkonoše national park. Three methods of supervised classification were used - Linear Spectral Unmixing, Support Vector Machine and Spectral Angle Mapper. Field data, spectral curves for exact trees from the eight areas obtained by the contact probe ASD FieldSpec 4 Wide-Res, were used for the extraction of endmembers of the spruces. For each research area maps of land cover were produced by means of the classification methods described above and the accuracies of the classifications were evaluated. Powered by TCPDF (www.tcpdf.org)
|
4 |
Maximum Likelihood Temperature/Emissivity Separation of Hyperspectral Images with Gaussian Distributed Downwelling RadianceNeal, David A. 01 May 2017 (has links)
Hyperspectral images are made up of energy measurements at different wavelengths of light. The case is considered where these measurements are dependent on temperature, the self-emitted energy (emissivity), and reflected energy (downwelling radiance) from the surroundings. The process where the downwelling radiance is fixed and the temperature and emissivity are estimated is referred to as temperature/emissivity separation.
Due to the way these terms mix, for a given set of measurements, there exist many pairs of temperatures and emissivities that satisfy the model. This creates ambiguity in the solution that must be resolved for the result to have any significance.
A new model is developed which reduces this ambiguity. This model is used to form an objective function. The temperature and emissivity which maximize the value of the objective function are solved for given a set of measurements.
As part of the solution, a new algorithm is developed which exploits the shape of the objective function to estimate the temperature and emissivity quickly and accurately. Extensive testing of this algorithm is performed to gain an understanding of its average speed and accuracy.
|
5 |
Improving interpretation by orthogonal variation : Multivariate analysis of spectroscopic dataStenlund, Hans January 2011 (has links)
The desire to use the tools and concepts of chemometrics when studying problems in the life sciences, especially biology and medicine, has prompted chemometricians to shift their focus away from their field‘s traditional emphasis on model predictivity and towards the more contemporary objective of optimizing information exchange via model interpretation. The complex data structures that are captured by modern advanced analytical instruments open up new possibilities for extracting information from complex data sets. This in turn imposes higher demands on the quality of data and the modeling techniques used. The introduction of the concept of orthogonal variation in the late 1990‘s led to a shift of focus within chemometrics; the information gained from analysis of orthogonal structures complements that obtained from the predictive structures that were the discipline‘s previous focus. OPLS, which was introduced in the beginning of 2000‘s, refined this view by formalizing the model structure and the separation of orthogonal variations. Orthogonal variation stems from experimental/analytical issues such as time trends, process drift, storage, sample handling, and instrumental differences, or from inherent properties of the sample such as age, gender, genetics, and environmental influence. The usefulness and versatility of OPLS has been demonstrated in over 500 citations, mainly in the fields of metabolomics and transcriptomics but also in NIR, UV and FTIR spectroscopy. In all cases, the predictive precision of OPLS is identical to that of PLS, but OPLS is superior when it comes to the interpretation of both predictive and orthogonal variation. Thus, OPLS models the same data structures but provides increased scope for interpretation, making it more suitable for contemporary applications in the life sciences. This thesis discusses four different research projects, including analyses of NIR, FTIR and NMR spectroscopic data. The discussion includes comparisons of OPLS and PLS models of complex datasets in which experimental variation conceals and confounds relevant information. The PLS and OPLS methods are discussed in detail. In addition, the thesis describes new OPLS-based methods developed to accommodate hyperspectral images for supervised modeling. Proper handling of orthogonal structures revealed the weaknesses in the analytical chains examined. In all of the studies described, the orthogonal structures were used to validate the quality of the generated models as well as gaining new knowledge. These aspects are crucial in order to enhance the information exchange from both past and future studies.
|
6 |
Contributions to Hyperspectral Unmixing / Contribution au démélange hyperspectralNakhostin, Sina 13 December 2017 (has links)
Le démelangeage spectral est un domaine de recherche actif qui trouve des applications dans des domaines variés comme la télédétection, le traitement des signaux audio ou la chimie. Dans le contexte des capteurs hyper spectraux, les images acquises sont souvent de faible résolution spatiale, principalement à cause des limites technologiques liées aux capteurs. Ainsi, les pixels sont constitués des mélanges des différentes signatures spectrales des matériaux présents dans la scène observée. Le démélangeage hyperspectral correspond à la procédure inverse permettant d'identifier la présence de ces matériaux ainsi que leur abondance par pixel. Déterminer le nombre total de matériaux dans l'image et par pixel est un problème difficile. Des approches à base de modèle de mélange linéaire ont été développées mais l’hypothèse sous-jacente de linéarité est parfois mise à mal dans des scénarios réels. Le problème est amplifié lorsqu'un même matériel présente une forte variabilité de signatures spectrales. De plus, la présence de nombreuses signatures parasites (ou anomalies) rend l'estimation plus difficile. Ces différents problèmes sont abordés dans cette thèse au travers de solutions théoriques et algorithmiques. La première contribution porte sur un démélangeage non-linéaire parcimonieux basé sur des approches à noyaux (SAGA+), qui estime et enlevé de l'analyse simultanément les anomalies. La deuxième contribution majeure porte sur une méthode de démélangeage supervisée basée sur la théorie du transport optimal (OT-unmixing) et permet d'intégrer la variabilité potentielle des matériaux observés. Un cas d'étude réel, dans le contexte du projet CATUT, et visant l'estimation des températures de surface par imagerie aéroportée, est finalement décrit dans la dernière partie de ce travail. / Spectral Unmixing has been an active area of research during the last years and found its application in domains including but not limited to remote sensing, audio signal processing and chemistry. Despite their very high spectral resolution, hyperspectral images (HSI) are known to be of low spatial resolution. This low resolution is a relative notion and is due to technological limitations of the HSI captors. As a consequence the values of HSI pixels are likely to be mixtures Of diferent materials in the scene. hyperspectral Unmixing then can be dened as an inverse procedure that consists in identifying in each pixel the amount of pure elements contributing to the pixels mixture. The total number of pure elements (also called endmembers) and the number of them included in one pixel are two informations tricky to retrieve. The simplest situation is when both the total number and type of endmembers within the scene are known and associated with a linear mixing process assumption. Though efficient in some situations, this linearity assumption does not generally hold in real world scenarios. Also in most cases the knowledge regarding the endmember signature of a specic material is not exact, raising the need to account for variations among different representations of the same material. Last but not least existence of anomalies and noise is a ubiquitous issue affecting the accuracy of the estimations. In this thesis, the three aforementioned issues were mainly brought into light and by introducing two original algorithms, defined within different mathematical frameworks, solutions to these open problems has provided. The first contribution using the applications of kernel theory proposes a new unsupervised algorithm (SAGA+) for representation of the non-linear manifold embedding the data while through a simultaneous anomaly detection procedure makes sure that the representation of the manifold hall is not being distorted at the presence of anomalies. The second major contribution of this PhD focuses mainly on the issue of endmember variability and by exploiting the notion of overcomplete dictionary tries to address this problem. This supervised algorithm (OT-unmixing) which is based on the optimal transport theory is comparable to the second step of SAGA+, as it solves an inversion problem and calculates the sparse representation of the original pixels through generation of the abundance maps. A case study in the context of CATUT project for land surface temperature estimation is described in the last part of this work where the two algorithms used for unmixing of airborne hyperspectral remote sensing.
|
7 |
Application of artificial vision algorithms to images of microscopy and spectroscopy for the improvement of cancer diagnosisPeñaranda Gómez, Francisco José 26 March 2018 (has links)
El diagnóstico final de la mayoría de tipos de cáncer lo realiza un médico experto en anatomía patológica que examina muestras tisulares o celulares sospechosas extraídas del paciente. Actualmente, esta evaluación depende en gran medida de la experiencia del médico y se lleva a cabo de forma cualitativa mediante técnicas de imagen tradicionales como la microscopía óptica. Esta tarea tediosa está sujeta a altos grados de subjetividad y da lugar a niveles de discordancia inadecuados entre diferentes patólogos, especialmente en las primeras etapas de desarrollo del cáncer.
La espectroscopía infrarroja por Transformada de Fourier (siglas FTIR en inglés) es una tecnología ampliamente utilizada en la industria que recientemente ha demostrado una capacidad creciente para mejorar el diagnóstico de diferentes tipos de cáncer. Esta técnica aprovecha las propiedades del infrarrojo medio para excitar los modos vibratorios de los enlaces químicos que forman las muestras biológicas. La principal señal generada consiste en un espectro de absorción que informa sobre la composición química de la muestra iluminada. Los microespectrómetros FTIR modernos, compuestos por complejos componentes ópticos y detectores matriciales de alta sensibilidad, permiten capturar en un laboratorio de investigación común imágenes hiperespectrales de alta calidad que aúnan información química y espacial. Las imágenes FTIR son estructuras de datos ricas en información que se pueden analizar individualmente o junto con otras modalidades de imagen para realizar diagnósticos patológicos objetivos. Por lo tanto, esta técnica de imagen emergente alberga un alto potencial para mejorar la detección y la graduación del riesgo del paciente en el cribado y vigilancia de cáncer.
Esta tesis estudia e implementa diferentes metodologías y algoritmos de los campos interrelacionados de procesamiento de imagen, visión por ordenador, aprendizaje automático, reconocimiento de patrones, análisis multivariante y quimiometría para el procesamiento y análisis de imágenes hiperespectrales FTIR. Estas imágenes se capturaron con un moderno microscopio FTIR de laboratorio a partir de muestras de tejidos y células afectadas por cáncer colorrectal y de piel, las cuales se prepararon siguiendo protocolos alineados con la práctica clínica actual. Los conceptos más relevantes de la espectroscopía FTIR se investigan profundamente, ya que deben ser comprendidos y tenidos en cuenta para llevar a cabo una correcta interpretación y tratamiento de sus señales especiales. En particular, se revisan y analizan diferentes factores fisicoquímicos que influyen en las mediciones espectroscópicas en el caso particular de muestras biológicas y pueden afectar críticamente su análisis posterior.
Todos estos conceptos y estudios preliminares entran en juego en dos aplicaciones principales. La primera aplicación aborda el problema del registro o alineación de imágenes hiperespectrales FTIR con imágenes en color adquiridas con microscopios tradicionales. El objetivo es fusionar la información espacial de distintas muestras de tejido medidas con esas dos modalidades de imagen y centrar la discriminación en las regiones seleccionadas por los patólogos, las cuales se consideran más relevantes para el diagnóstico de cáncer colorrectal. En la segunda aplicación, la espectroscopía FTIR se lleva a sus límites de detección para el estudio de las entidades biomédicas más pequeñas. El objetivo es evaluar las capacidades de las señales FTIR para discriminar de manera fiable diferentes tipos de células de piel que contienen fenotipos malignos. Los estudios desarrollados contribuyen a la mejora de métodos de decisión objetivos que ayuden al patólogo en el diagnóstico final del cáncer. Además, revelan las limitaciones de los protocolos actuales y los problemas intrínsecos de la tecnología FTIR moderna, que deberían abordarse para permit / The final diagnosis of most types of cancers is performed by an expert clinician in anatomical pathology who examines suspicious tissue or cell samples extracted from the patient. Currently, this assessment largely relies on the experience of the clinician and is accomplished in a qualitative manner by means of traditional imaging techniques, such as optical microscopy. This tedious task is subject to high degrees of subjectivity and gives rise to suboptimal levels of discordance between different pathologists, especially in early stages of cancer development.
Fourier Transform infrared (FTIR) spectroscopy is a technology widely used in industry that has recently shown an increasing capability to improve the diagnosis of different types of cancer. This technique takes advantage of the ability of mid-infrared light to excite the vibrational modes of the chemical bonds that form the biological samples. The main generated signal consists of an absorption spectrum that informs of the chemical composition of the illuminated specimen. Modern FTIR microspectrometers, composed of complex optical components and high-sensitive array detectors, allow the acquisition of high-quality hyperspectral images with spatially-resolved chemical information in a common research laboratory. FTIR images are information-rich data structures that can be analysed alone or together with other imaging modalities to provide objective pathological diagnoses. Hence, this emerging imaging technique presents a high potential to improve the detection and risk stratification in cancer screening and surveillance.
This thesis studies and implements different methodologies and algorithms from the related fields of image processing, computer vision, machine learning, pattern recognition, multivariate analysis and chemometrics for the processing and analysis of FTIR hyperspectral images. Those images were acquired with a modern benchtop FTIR microspectrometer from tissue and cell samples affected by colorectal and skin cancer, which were prepared by following protocols close to the current clinical practise. The most relevant concepts of FTIR spectroscopy are thoroughly investigated, which ought to be understood and considered to perform a correct interpretation and treatment of its special signals. In particular, different physicochemical factors are reviewed and analysed, which influence the spectroscopic measurements for the particular case of biological samples and can critically affect their later analysis.
All these knowledge and preliminary studies come into play in two main applications. The first application tackles the problem of registration or alignment of FTIR hyperspectral images with colour images acquired with traditional microscopes. The aim is to fuse the spatial information of distinct tissue samples measured by those two imaging modalities and focus the discrimination on regions selected by the pathologists, which are meant to be the most relevant areas for the diagnosis of colorectal cancer. In the second application, FTIR spectroscopy is pushed to their limits of detection for the study of the smallest biomedical entities. The aim is to assess the capabilities of FTIR signals to reliably discriminate different types of skin cells containing malignant phenotypes. The developed studies contribute to the improvement of objective decision methods to support the pathologist in the final diagnosis of cancer. In addition, they reveal the limitations of current protocols and intrinsic problems of modern FTIR technology, which should be tackled in order to enable its transference to anatomical pathology laboratories in the future. / El diagnòstic final de la majoria de tipus de càncer ho realitza un metge expert en anatomia patològica que examina mostres tissulars o cel¿lulars sospitoses extretes del pacient. Actualment, aquesta avaluació depèn en gran part de l'experiència del metge i es porta a terme de forma qualitativa mitjançant tècniques d'imatge tradicionals com la microscòpia òptica. Aquesta tasca tediosa està subjecta a alts graus de subjectivitat i dóna lloc a nivells de discordança inadequats entre diferents patòlegs, especialment en les primeres etapes de desenvolupament del càncer.
L'espectroscòpia infraroja per Transformada de Fourier (sigles FTIR en anglès) és una tecnologia àmpliament utilitzada en la indústria que recentment ha demostrat una capacitat creixent per millorar el diagnòstic de diferents tipus de càncer. Aquesta tècnica aprofita les propietats de l'infraroig mitjà per excitar els modes vibratoris dels enllaços químics que formen les mostres biològiques. El principal senyal generat consisteix en un espectre d'absorció que informa sobre la composició química de la mostra il¿luminada. Els microespectrómetres FTIR moderns, compostos per complexos components òptics i detectors matricials d'alta sensibilitat, permeten capturar en un laboratori d'investigació comú imatges hiperespectrals d'alta qualitat que uneixen informació química i espacial. Les imatges FTIR són estructures de dades riques en informació que es poden analitzar individualment o juntament amb altres modalitats d'imatge per a realitzar diagnòstics patològics objectius. Per tant, aquesta tècnica d'imatge emergent té un alt potencial per a millorar la detecció i la graduació del risc del pacient en el cribratge i vigilància de càncer.
Aquesta tesi estudia i implementa diferents metodologies i algoritmes dels camps interrelacionats de processament d'imatge, visió per ordinador, aprenentatge automàtic, reconeixement de patrons, anàlisi multivariant i quimiometria per al processament i anàlisi d'imatges hiperespectrals FTIR. Aquestes imatges es van capturar amb un modern microscopi FTIR de laboratori a partir de mostres de teixits i cèl¿lules afectades per càncer colorectal i de pell, les quals es van preparar seguint protocols alineats amb la pràctica clínica actual. Els conceptes més rellevants de l'espectroscòpia FTIR s'investiguen profundament, ja que han de ser compresos i tinguts en compte per dur a terme una correcta interpretació i tractament dels seus senyals especials. En particular, es revisen i analitzen diferents factors fisicoquímics que influeixen en els mesuraments espectroscòpiques en el cas particular de mostres biològiques i poden afectar críticament la seua anàlisi posterior.
Tots aquests conceptes i estudis preliminars entren en joc en dues aplicacions principals. La primera aplicació aborda el problema del registre o alineació d'imatges hiperespectrals FTIR amb imatges en color adquirides amb microscopis tradicionals. L'objectiu és fusionar la informació espacial de diferents mostres de teixit mesurades amb aquestes dues modalitats d'imatge i centrar la discriminació en les regions seleccionades pels patòlegs, les quals es consideren més rellevants per al diagnòstic de càncer colorectal. En la segona aplicació, l'espectroscòpia FTIR es porta als seus límits de detecció per a l'estudi de les entitats biomèdiques més xicotetes. L'objectiu és avaluar les capacitats dels senyals FTIR per discriminar de manera fiable diferents tipus de cèl¿lules de pell que contenen fenotips malignes. Els estudis desenvolupats contribueixen a la millora de mètodes de decisió objectius que ajuden el patòleg en el diagnòstic final del càncer. A més, revelen les limitacions dels protocols actuals i els problemes intrínsecs de la tecnologia FTIR moderna, que haurien d'abordar per permetre la seva transferència als laboratoris d'anatomia patològica en el futur. / Peñaranda Gómez, FJ. (2018). Application of artificial vision algorithms to images of microscopy and spectroscopy for the improvement of cancer diagnosis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/99748
|
8 |
Traitement statistique d'images hyperspectrales pour la détection d'objets diffus : application aux données astronomiques du spectro-imageur MUSE / Statistical hyperspectral image processing for diffuse object detection : application to the astronomical images from the spectro-imager MUSECourbot, Jean-Baptiste 13 October 2017 (has links)
Nous étudions le problème de la détection et de la segmentation dans des images extrêmement bruitées. L'application est la détection, dans les données hyperspectrales astronomiques de l'instrument MUSE, de halos (localisés et homogènes dans les images) et de filaments (structures anisotropes à grande échelle). Dans un premier temps, nous. étudions le problème de détection par tests d'hypothèses dans des images hyperspectrales en nous appuyant sur des contraintes de formes spatiales, spectrales et de similarité entre spectres. Nous introduisons ensuite un modèle de champ de Markov couple convolutif, qui permet de poser le problème de détection comme le cas particulier d'un problème de segmentation, tout en apportant un a priori markovien sur la classification recherchée. Ensuite, afin de modéliser les structures orientées dans les images, nous introduisons un modèle de champ de Markov triplet permettant la segmentation simultanée des orientations et des classes. Dans le but de modéliser des structures à grande échelle dans les images, nous introduisons également un modèle d'arbre de Markov triplet permettant la prise en compte simultanée de composantes hiérarchiques inter-résolution et d'homogénéité au sein d'une résolution. Chaque modèle a été validé et comparé à l'état de l'art, puis tous ont été comparés sur des données synthétiques dans le contexte de la détection dans des images hyperspectrales astronomiques. Le manuscrit présente enfin l'analyse des résultats obtenus sur des données réelles issues de l'instrument MUSE. / We study the detection and segmentation problems in extremely noised images. The main application of these works is the detection of large-scale structures in MUSE astronomical hyperspectral images, namely haloes (localized and homogenous in images) and filaments (anisotropie large-scale structures). First, we study the hypothesis-testing detection in hyperspectral images, based on spatial and spectral shape constraints as well as similarity constraints. Then, we introduce a pairwise Markov field model which allows the formulation of the detection problem as a special case of the segmentation problem while introducing a Markovian prior on the result. Next , in order to model onented structures m images, we propose a triplet Markov field model following the ià1ntsegmentation of orientations and classes in images. Finally, we study the modelling of large-scale structures in images by introducing a triplet Markov tree model handling inter-resolution dependancy jointly with homogeneity within resolutions. The two latter models were introduced in the general framework of image segmentation. Each model was validated with respect toits alternatives, then all models were compared on synthetic data in the context of detection within astronomical hyperspectral images. Finally, this document presents the analysis of the results on real MUSE images.
|
9 |
Couplage entre modélisation opto-physique des scènes de végétation complexes et chimiométrie : application au phénotypage par imagerie hyperspectrale de proximité / Coupling between opto-physical modeling of complex vegetation scenes and chemometry : application to phenotyping by short range hyperspectral imagingMakdessi, Nathalie al 16 November 2017 (has links)
L'imagerie hyperspectrale de proximité est un outil prometteur pour le phénotypage ou la surveillance de la végétation. En association avec la régression des moindres carrés partiels ou PLS-R, elle permet de construire des cartographies de haute résolution spatiale du contenu chimique à l’échelle de la canopée. Cependant, plusieurs phénomènes optiques doivent être pris en compte lors de l'application de cette approche aux scènes de végétation dans des conditions naturelles. Notamment, les facteurs additifs et multiplicatifs liés respectivement à la réflexion spéculaire et à l'inclinaison des feuilles qui peuvent être surmontés par prétraitement. Mais le phénomène qui pose le plus de défis est la réflexion multiple. Il se produit lorsqu'une feuille est éclairée en partie par la lumière directe, et en partie par la réflexion ou la transmission de la lumière des feuilles voisines, induisant de forts effets non linéaires sur son spectre de réflectance. Bien que cet effet puisse être pris en compte dans certains modèles de télédétection à l’échelle de la canopée, aucune étude n’a été proposée à ce jour sur la façon dont un tel phénomène affecte les évaluations spectrales de la biochimie végétale par imagerie de proximité. L'objectif de la présente étude était d'analyser ces effets dans le contexte de l'imagerie hyperspectrale à des fins de phénotypage végétal et de proposer des méthodes chimiométriques pour les surmonter. Le développement méthodologique a été basé sur des outils de simulation inclus dans la plate-forme open source OpenAlea (http://openalea.gforge.inria.fr/dokuwiki/doku.php). Une scène typique de canopée de blé a été modélisée à l'aide du modèle Adel-Wheat et combinée au modèle de propagation de la lumière Caribu. L'outil proposé simule la réflectance apparente de chaque feuille visible dans la canopée pour une réflectance et une transmittance réelles données, permettant de synthétiser des images hyperspectrales réalistes. Cette approche par simulation nous a permis, dans un premier temps, d’analyser la distribution dans l’espace spectral des perturbations engendrées par les réflexions multiples, puis d’en déduire une méthode de correction applicable dans le cas d’une régression PLS. La méthode est basée sur la construction de deux sous-espaces W et B générés respectivement par la formulation analytique des réflexions multiples et la variable d'intérêt. Ceci nous permet alors de définir une matrice de projection sur B selon la direction W (projection oblique), qui permet de supprimer l’effet des réflexions multiples tout en conservant l’information utile. Il suffit ensuite d’appliquer cette projection à chaque spectre lors de l’apprentissage et de la mise en œuvre du modèle PLS. La méthode a d’abord été développée et paramétrée sur les données simulées, dans le contexte de l’évaluation de la teneur en azote (LNC) de feuilles de blé. Pour cela, les spectres de réflectance (450-1100 nm) de 57 feuilles de blé ont été collectés à l'aide d'un spectromètre ASD (FieldSpec®, Analytical Spectral Devices, Inc., Boulder, Colorado, USA), tandis que leur LNC a été mesuré à l'aide d'analyses chimiques. Des modèles de régression avec et sans projection oblique ont alors été construits à partir des spectres ASD et appliqués sur l’ensemble des données simulées. Le modèle avec projection oblique a donné d’excellents résultats (R² = 0.931; RMSEP = 0.29% DM) en comparaison du modèle classique (R² = 0.915; RMSEP = 0.42% DM).La même méthode a ensuite été appliquée en conditions réelles, sur des feuilles de blé cultivées en pot et au champ. Pour cela, des feuilles ont été collectées et imagées à plat sur fond noir pour la construction des modèles PLS, qui ont ensuite été appliqués aux plantes sur pied. Ces expérimentations ont confirmé d’une part que la PLS-R classique entraînait une forte surestimation du LNC sur les feuilles entourées d’autres feuilles, d’autre part que la projection oblique évitait cette surestimation. / Short range hyperspectral imagery is a promising tool for phenotyping and vegetation survey. When associated with partial least square regression (PLS-R), it allows high spatial resolution mapping of the plant chemical content at the canopy scale. However, several optical phenomena have to be taken into account when applying this approach to vegetation scenes in natural conditions. For instance, additive and multiplicative factors due respectively to specular reflection and leaf inclination can be overcome by spectral preprocessing. But the most challenging phenomenon is multiple scattering. It appears when a leaf is partly lightened by the reflected or transmitted light from surrounding leaves, resulting in strong non linear effects in its apparent reflectance spectrum. Though this effect can be taken into account in some remote sensing models at the canopy scale, no study has been proposed until now concerning its impact on spectral prediction of vegetation chemical content by short range imagery.The objective of this project, associated with a PhD work, was to analyze these effects in the context of hyperspectral imagery for vegetation phenotyping purpose, and to propose spectral processing methods to overcome them.The methodological development has been based on simulation tools included in the open source platform OpenAlea (http://openalea.gforge.inria.fr/dokuwiki/doku.php). A typical wheat canopy scene has been modelled using Adel-Wheat and combined with the light propagation model Caribu. The proposed tool simulates the apparent reflectance of every visible leaf in the canopy for a given actual reflectance and transmittance, allowing to synthetize realistic hyperspectral images.This simulation approach has allowed us, in a first step, to analyze the distribution of deviations due to multiple scattering in the spectral space, and then to infer a correction method in the frame of PLS regression. This method relies on the building of two subspaces EW and EB respectively generated by the analytic formulation of multiple scattering and by the variable of interest. It allows us to define a projection operation on EB subspace along EW direction (oblique projection), in order to remove multiple scattering effects while preserving useful information. This projection operation is then applied on every spectra during learning phase and using phase of the PLS model.The method has first been developed and tuned using simulated data, in the frame of leaf nitrogen content (LNC) prediction of wheat leaves. For this purpose, reflectance spectra (450-1100 nm) of 57 wheat leaves have been collected using a ASD filed spectrometer (FieldSpec®, Analytical Spectral Devices, Inc., Boulder, Colorado, USA), while their LNC was measured through reference chemical analyses. Regression models with and without oblique projection have then been built from the ASD spectra and applied to simulated data. The model with oblique projection provided excellent results (R² = 0.931; RMSEP = 0.29% DM), compared to the classical one (R² = 0.915; RMSEP = 0.42% DM).The same method has then been applied in real conditions on wheat pot plants and field plants. For this purpose, some leaves have been collected and laid on a black paper background to be imaged, in order to build PLS models that have then been applied on in-situ plants. These experimentations have confirmed that the classical PLS-R induces a strong overestimation of LNC on leaves surrounded by other leaves, and that oblique projection corrects this overestimation (same prediction on surrounded then isolated leaf).
|
10 |
Visual Analytics for Decision Making in Performance EvaluationJieqiong Zhao (8791535) 05 May 2020 (has links)
Performance analysis often considers numerous factors contributing to performance, and the relative importance of these factors is evolving based on dynamic conditions and requirements. Investigating large numbers of factors and understanding individual factors' predictability within the ultimate performance are challenging tasks. A visual analytics approach that integrates interactive analysis, novel visual representations, and predictive machine learning models can provide new capabilities to examine performance effectively and thoroughly. Currently, only limited research has been done on the possible applications of visual analytics for performance evaluation. In this dissertation, two specific types of performance analysis are presented: (1) organizational employee performance evaluation and (2) performance improvement of machine learning models with interactive feature selection. Both application scenarios leverage the human-in-the-loop approach to assist the identification of influential factors. For organizational employee performance evaluation, a novel visual analytics system, MetricsVis, is developed to support exploratory organizational performance analysis. MetricsVis incorporates hybrid evaluation metrics that integrate quantitative measurements of observed employee achievements and subjective feedback on the relative importance of these achievements to demonstrate employee performance at and between multiple levels regarding the organizational hierarchy. MetricsVis II extends the original system by including actual supervisor ratings and user-guided rankings to capture preferences from users through derived weights. Comparing user preferences with objective employee workload data enables users to relate user evaluation to historical observations and even discover potential bias. For interactive feature selection and model evaluation, a visual analytics system, FeatureExplorer, allows users to refine and diagnose a model iteratively by selecting features based on their domain knowledge, interchangeable features, feature importance, and the resulting model performance. FeatureExplorer enables users to identify stable, trustable, and credible predictive features that contribute significantly to a prediction model.
|
Page generated in 0.2721 seconds