• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 15
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Reduced methamphetamine self-administration following single or dual hypocretin-receptor blockade or viral vector hypocretin-knockdown in adult male rats

Zarin, Tyler, Schmeichel, Brooke 25 April 2023 (has links)
The hypocretin/orexin (HCRT) system is associated with compulsive stimulant drug use, involving both HCRT-receptor 1 (-R1) and HCRT-receptor 2 (-R2). Few studies, however, have examined the role of HCRT-R2 or combined HCRT-R1/2 on compulsive methamphetamine (METH) taking behavior. In this study, we examined the effects of HCRT-R1, -R2, and -R1/2 antagonists on compulsive METH self-administration, as modeled by escalated intake in adult male Wistar rats allowed extended access to METH. Three cohorts of rats were allowed either short (1h; ShA; n=7-10/cohort) or long (6h; LgA; n=7-9/cohort) access to METH intravenous self-administration for 14 sessions (fixed ratio 1 schedule). Each cohort was then systemically administered a single- or dual-HCRT-R antagonist 30 min prior to METH self-administration testing: cohort 1, selective HCRT-R1 antagonist (RTIOX-276; RTI-R1; 0, 10, and 20 mg/kg); cohort 2, selective HCRT-R2 antagonist (JNJ-10397049; JNJ-R2; 0, 10, and 20 mg/kg); and cohort 3, dual HCRT-R1/2 antagonist (Suvorexant; SUV-R1/2; 0, 30, and 60 mg/kg). RTI-R1 elicited a dose-dependent reduction in METH intake in LgA, but not ShA, in the first hour. Administration of JNJ-R2 had no effect on METH intake in the first hour in neither ShA nor LgA rats, but reduced METH intake during the full 6 h session at the lowest dose. SUV-R1/2 administration had no effect on METH intake in ShA rats, but showed significant attenuation of METH-taking at the highest dose in both the first hour and full 6h session for LgA rats. Locomotor activity was significantly reduced following RTI-R1 and SUV-R1/2 in ShA rats only. To further explore the role that HCRT plays in METH dependence after a period of abstinence, we used a shRNA-encoding adeno-associated viral vector (AAV) to silence Hcrt in a separate cohort of previously-escalated METH-dependent rats. Following an initial escalation phase, and prior to a 3-week period of drug abstinence, rats were injected with either a control scramble-RNA AAV (AAV-Scram; n= 4) or a Hcrt-knockdown AAV (AAV-HCRT-KD; n= 5). AAV-Scram rats showed a significant decrease in METH self-administration post-abstinence, and a subsequent increase in METH-taking following a re-escalation period. In contrast, AAV-HCRT-KD rats showed a significant attenuation of METH self-administration following the re-escalation period. Combined, these results suggest HCRT neurotransmission at both HCRT-R1 and -R2 may contribute to compulsive METH-taking behavior.
12

HYPOCRETIN/OREXIN AND THE VENTRAL MIDBRAIN: TOPOGRAPHY AND FUNCTION ASSOCIATED WITH PSYCHOSTIMULANT-TAKING AND AFFECT

Simmons, Steven James January 2018 (has links)
Abuse of psychostimulants including cocaine and new synthetic formulations remains an international public health problem and economic burden. Addiction develops consequential to positive and negative drives that underlie “getting” and “staying” high. Dopamine (DA), arising from ventral tegmental area (VTA), projects to ventral striatal targets to encode reward signals and reward prediction. Mesolimbic DA is implicated in both the immediate rewarding effects of psychostimulants, and its hypoactivity underlies negative affect as drug levels decline. Accordingly, modulating inputs to midbrain DA possesses capacity to mediate positive/rewarding and negative/aversive effects of drugs. Hypocretin/orexin (hcrt/ox) is a family of excitatory hypothalamic peptides that projects widely throughout the central nervous system including to VTA DA cells, and hcrt/ox mediates brain reward function and motivation for self-administered drugs. Notably, the first-in-class hcrt/ox receptor antagonist (suvorexant) was approved for management of insomnia in the summer of 2014. Also within the past decade, the caudal division of VTA (termed “tail of VTA” and “rostromedial tegmental nucleus [RMTg]”) was detailed for its ability to negatively regulate VTA DA. Functionally, stimulation of the GABA-producing RMTg population encodes aversion and responds to aversive cues. Curiously, anatomy work depicts the hypothalamus as a principal input to the RMTg although the cellular phenotypes and functions of hypothalamic projections to RMTg have not been fully resolved. Work in this thesis was designed to map hcrt/ox projections to VTA and RMTg in effort to understand functionally-relevant topographical arrangement. In preliminary assessments, we test for the first time the ability of suvorexant to modulate reward and reinforcement associated with psychostimulant use in rats. Additionally, we profile how self-administered cocaine and “bath salt” synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) influence affective states in rats by measuring ultrasonic vocalizations (USVs) and comparing patterns of responding. Subsequently, we test the ability of suvorexant to influence MDPV-taking and affective changes that promote self-administration. Finally, we utilize direct-site pharmacology to assess the degree to which hcrt/ox transmission within VTA and RMTg contributes to motivated responding for and affective processing of self-administered cocaine across two doses. Specifically, we hypothesized that intra-VTA suvorexant would suppress drug-taking by reducing the rewarding value of self-administered cocaine, whereas intra-RMTg hcrt/ox peptide injection would suppress drug-taking by increasing aversive value of self-administered cocaine. We observed that systemic suvorexant effectively reduces motivated cocaine-taking, and that this reduction relates in part to reductions in subjective reward of self-administered cocaine as interpreted by reductions in positively-valenced 50-kHz USVs. Retrograde tracing supports that hcrt/ox projects to both VTA and RMTg without discernible topographical arrangement. Target-site pharmacology finds that intra-VTA suvorexant has no appreciable effects on motivated cocaine-taking but tends to elevate 50-kHz USVs during the pre-drug “anticipation” time epoch in low-dose cocaine self-administering rats (0.375 mg/kg/inf). While intra-RMTg hcrt/ox pre-treatment sparsely affected USVs, 0.3 nmol/hemisphere hcrt/ox significantly enhanced cocaine-taking in low-dose cocaine self-administering rats, and, in high-dose (0.750 mg/kg/inf) cocaine self-administering rats, intra-RMTg hcrt/ox significantly suppressed responding when pre-treated with 1.0 and 3.0 nmol/hemisphere. Collectively, studies within this thesis promote the use of hcrt/ox receptor antagonists as adjunct pharmacotherapy in managing psychostimulant use disorders, although the circuitries through which aberrant motivated behaviors are modulated are not entirely clear. Future work will need to be performed to understand how hcrt/ox transmits to neurochemically-defined cell populations residing within VTA and RMTg—these pathways are recruited for processing stimuli as “rewarding” and “aversive” which are critical contributors in the development of substance use disorders and other psychiatric disorders characterized by dysregulated reward processing. / Biomedical Sciences
13

Paramètres cliniques, électroencéphalograhiques et biologiques pour optimiser les critères diagnostiques de la narcolepsie / Clinical, electroencephalographic and biological parameters to optimise narcolepsy diagnostic criteria

Andlauer, Olivier 11 December 2014 (has links)
La narcolepsie est une maladie rare, touchant une personne sur 2000. Elle se caractérise par l'association d'une somnolence diurne excessive, d'épisodes de cataplexie, de paralysies du sommeil, d'hallucinations hypnagogiques. et d'une fragmentation du sommeil. La narcolepsie sans cataplexie constitue un sous-type hétérogène. Le diagnostic de narcolepsie peut être clinique, mais bien souvent un Test Itératif de Latence d'Endormissement (T1LE), précédé d'une polysomnographie nocturne (NPSG). sont utilisés pour porter le diagnostic.La cause de la plupart des cas de narcolepsie avec cataplexie a été découverte au début des années 2000: la destruction, probablement d'origine auto-immune. des neurones à hypocrétine de l'hypothalamus. Un déficit en hypocrétine à la ponction lombaire constitue désormais un test de référence pour établir le diagnostic, ce qui offre l'opportunité d'optimiser les critères actuels et de tester de nouvelles hypothèses diagnostiques en regard de ce test de référence. Peu d'études ont à ce jour spécifiquement porté sur la narcolepsie sans cataplexie et son diagnostic. Nous avons donc cherché à identifier les prédicteurs du déficit en hypocrétine dans la narcolepsie sans cataplexie. De plus, dans la narcolepsie-cataplexie, l'utilisation comme critère diagnostique d'une latence courte d'apparition du sommeil paradoxal à la NPSG n'a jamais été évaluée en utilisant comme test de référence le déficit en hypocrétine, et nous avons donc cherché à en déterminer l'utilité diagnostic et la valeur-seuil optimale.Afin de mener à bien ces projets de recherche, nous avons initié et participé au développement du logiciel d'analyse ROC (Receiver Operating Characteristic) SoftROC. Dans la narcolepsie sans cataplexie. nous avons montré que les paramètres électrophysiologiques, plus que cliniques, différaient entre les patients avec un taux bas d'hypocrétine et ceux avec un taux normal. Dans la narcolepsie avec cataplexie. nous avons établi qu'une latence courte (< 15 minutes) d'apparition du sommeil paradoxal à la NPSG était un test diagnostique spécifique, mais peu sensible, pour la narcolepsie avec déficit en hypocrétine. Nos résultats ont contribué à la révision des classifications internationales des troubles du sommeil. / Narcolepsy is characterised by excessive diurnal sleepiness, cataplexy, sleep paralysis, hypnagogic hallucinations andsleep fragmentation. Narcolepsy without cataplexy is a heterogeneous subtype. Diagnosis can be established clinically,but a Mulitple Sleep Latency Test (MSLT) following a Nocturnal PolySomnoGraphy (NPSG), is used most of the time.Auto-immune loss of hypocretin cells is responsible for narcolepsy with cataplexy. Hypocretin deficiency at lumbarpuncture is a gold standard for diagnosis.Few studies have focused specifically on narcolepsy without cataplexy. Our aim was to identify predictors of hypocretindeficiency in this condition. Moreover, in narcolepsy with cataplexy, a short REM sleep latency at NPSG has never beenevaluated as a diagnostic test using hypocretin deficiency as a gold standard, and we therefore have aimed at assessing itsdiagnostic utility and optimal cut-off.In order to conduct our research, we have contributed to developing a ROC analysis software (SoftROC).In narcolepsy without cataplexy- objective (NPSG and MSLT) more than clinical parameters were predictors ofhypocretin-deficiency. In narcolepsy-cataplexy, a short (< 15 mins) REM latency at NPSG was a specific, but notsensitive. diagnostic test. Our results contributed to the revision of international diagnostic classifications.
14

Effects of Orexins, Guanylins and Feeding on Duodenal Bicarbonate Secretion and Enterocyte Intracellular Signaling

Bengtsson, Magnus Wilhelm January 2008 (has links)
<p>The duodenal epithelium secretes bicarbonate ions and this is regarded as the primary defence mechanism against the acid discharged from the stomach. For an efficient protection, the duodenum must also function as a sensory organ identifying luminal factors. Enteroendocrine cells are well-established intestinal “taste” cells that express signaling peptides such as orexins and guanylins. Luminal factors affect the release of these peptides, which may modulate the activity of nearby epithelial and neural cells.</p><p>The present thesis considers the effects of orexins and guanylins on duodenal bicarbonate secretion. The duodenal secretory response to the peptides was examined in anaesthetised rats <i>in situ</i> and the effects of orexin-A on intracellular calcium signaling by human as well as rat duodenal enterocytes were studied <i>in vitro</i>.</p><p>Orexin-A, guanylin and uroguanylin were all stimulants of bicarbonate secretion. The stimulatory effect of orexin-A was inhibited by the OX<sub>1</sub>-receptor selective antagonist SB-334867. The muscarinic antagonist atropine on the other hand, did not affect the orexin-A-induced secretion, excluding involvement of muscarinic receptors. Orexin-A induced calcium signaling in isolated duodenocytes suggesting a direct effect at these cells. Interestingly, orexin-induced secretion and calcium signaling as well as mucosal orexin-receptor mRNA and OX<sub>1</sub>-receptor protein levels were all substantially downregulated in overnight fasted rats compared with animals with continuous access to food. Further, secretion induced by Orexin-A was shown to be dependent on an extended period of glucose priming.</p><p>The uroguanylin-induced bicarbonate secretion was reduced by atropine suggesting involvement of muscarinic receptors. The melatonin receptor antagonist luzindole attenuated the secretory response to intra-arterially administered guanylins but had no effect on secretion when the guanylins were given luminally. </p><p>In conclusion, the results suggest that orexin-A as well as guanylins may participate in the regulation of duodenal bicarbonate secretion. Further, the duodenal orexin system is dependent on the feeding status of the animals.</p>
15

Effects of Orexins, Guanylins and Feeding on Duodenal Bicarbonate Secretion and Enterocyte Intracellular Signaling

Bengtsson, Magnus Wilhelm January 2008 (has links)
The duodenal epithelium secretes bicarbonate ions and this is regarded as the primary defence mechanism against the acid discharged from the stomach. For an efficient protection, the duodenum must also function as a sensory organ identifying luminal factors. Enteroendocrine cells are well-established intestinal “taste” cells that express signaling peptides such as orexins and guanylins. Luminal factors affect the release of these peptides, which may modulate the activity of nearby epithelial and neural cells. The present thesis considers the effects of orexins and guanylins on duodenal bicarbonate secretion. The duodenal secretory response to the peptides was examined in anaesthetised rats in situ and the effects of orexin-A on intracellular calcium signaling by human as well as rat duodenal enterocytes were studied in vitro. Orexin-A, guanylin and uroguanylin were all stimulants of bicarbonate secretion. The stimulatory effect of orexin-A was inhibited by the OX1-receptor selective antagonist SB-334867. The muscarinic antagonist atropine on the other hand, did not affect the orexin-A-induced secretion, excluding involvement of muscarinic receptors. Orexin-A induced calcium signaling in isolated duodenocytes suggesting a direct effect at these cells. Interestingly, orexin-induced secretion and calcium signaling as well as mucosal orexin-receptor mRNA and OX1-receptor protein levels were all substantially downregulated in overnight fasted rats compared with animals with continuous access to food. Further, secretion induced by Orexin-A was shown to be dependent on an extended period of glucose priming. The uroguanylin-induced bicarbonate secretion was reduced by atropine suggesting involvement of muscarinic receptors. The melatonin receptor antagonist luzindole attenuated the secretory response to intra-arterially administered guanylins but had no effect on secretion when the guanylins were given luminally. In conclusion, the results suggest that orexin-A as well as guanylins may participate in the regulation of duodenal bicarbonate secretion. Further, the duodenal orexin system is dependent on the feeding status of the animals.

Page generated in 0.0322 seconds