Spelling suggestions: "subject:"hysteresis current control"" "subject:"ysteresis current control""
1 |
Multifrequency Averaging of Hysteresis-Current-Controlled DC-DC ConvertersLiu, Yingying 01 January 2015 (has links)
Multifrequency averaging is one of the widely used modeling and simulation techniques today for the analysis and design of power electronic systems. This technique is capable of providing the average behavior as well as the ripple behavior of power electronic systems. Hysteresis current control has fast response and internal current stability through controlling switches to maintain the current within a given hysteresis band of a given current command. However the state space variables in a hysteresis controlled system cannot be directly approached by multifrequency averaging method because of time varing switching frequency. In this thesis, a method of applying multifrequency averaging to hysteresis current controlled dc-dc converters is proposed. A dc-dc converter model with the application of this method has been successfully developed and validated both in simulation and experiment.
|
2 |
An Evaluation of Harmonic Isolation Techniques for Three Phase Active FilteringIngram, David January 1998 (has links)
Recent advances in power electronics have lead to the wide spread adoption of advanced power supplies and energy efficient devices. This has lead to increased levels of harmonic currents in power systems, degrading the performance of electrical machinery and interfering with telecommunication services. Active filters provide a solution to these problems by compensating for the distorted currents drawn by non-linear loads. Optimal methods for controlling these active filters have been determined by computer simulation and experimental implementation. Methods used for isolating the harmonic content of an unbalanced three phase load current were compared by computer simulations. A technique based on the Fast Fourier Transform (FFT) was developed as part of this work and shown to perform favourably. Notch Filtering, Sinusoidal Subtraction, Instantaneous Reactive Power Theory, Synchronous Reference Frame and Fast Fourier Transform methods were simulated. The methods shown to be suitable for compensation of three phase unbalanced loads were implemented in a Digital Signal Processor to evaluate true performance. These methods were Notch Filtering, Sinusoidal Subtraction, Fast Fourier Transform, and a High Pass Filter based method. A completely digital hysteresis current controller for a three phase active filter inverter has been developed and implemented with a Field Programmable Gate Array. This controller interfaces directly to a digital signal processor and is resistant to electromagnetic interference. Results from the experimental hardware verified that the active filter model used for simulation is accurate, and may be used for further development of harmonic isolation methods. A technique using notch filtering gives the best performance for steady loads, with the FFT based technique giving the most flexible operation for a range of load current characteristics. Novel use of the FFT based harmonic isolation technique allows selective cancellation of individual harmonics, with particular application to multiple shunt filters connected in parallel.
|
3 |
AVERAGE-VALUE MODELING OF HYSTERESIS CURRENT CONTROL IN POWER ELECTRONICSChen, Hanling 01 January 2015 (has links)
Hysteresis current control has been widely used in power electronics with the advantages of fast dynamic response under parameter, line and load variation and ensured stability. However, a main disadvantage of hysteresis current control is the uncertain and varying switching frequency which makes it difficult to form an average-value model. The changing switching frequency and unspecified switching duty cycle make conventional average-value models based on PWM control difficult to apply directly to converters that are controlled by hysteresis current control.
In this work, a new method for average-value modeling of hysteresis current control in boost converters, three-phase inverters, and brushless dc motor drives is proposed. It incorporates a slew-rate limitation on the inductor current that occurs naturally in the circuit during large system transients. This new method is compared with existing methods in terms of simulation run time and rms error. The performance is evaluated based on a variety of scenarios, and the simulation results are compared with the results of detailed models. The simulation results show that the proposed model represents the detailed model well and is faster and more accurate than existing methods. The slew-rate limitation model of hysteresis current control accurately captures the salient detail of converter performance while maintaining the computational efficiency of average-value models. Validations in hardware are also presented.
|
4 |
A Study of Field-Oriented Control of a Permanent Magnet Synchronous Generator and Hysteresis Current Control for Wind Turbine ApplicationBaktiono, Surya 27 June 2012 (has links)
No description available.
|
Page generated in 0.1152 seconds