Spelling suggestions: "subject:"hysteretic damper"" "subject:"liysteretic damper""
1 |
Computational and Experimental Investigation of Seismic Structural Fuse Shapes for Structural SystemsNguyen, Trai Ngoc 19 September 2022 (has links)
Structural fuses are ductile elements of a structure that are designed to yield and protect the surrounding members from damage, and then be replaceable after a major seismic event. A promising type of seismic structural fuse consists of a steel plate with engineered cutouts leaving a configuration of shear-acting links remaining. There have been several studies on various cutout patterns for shear-acting structural fuses including butterfly-shaped links, hourglass-shaped links, elliptical holes, and link shapes obtained from topology optimization. In most cases, the links are designed to undergo flexural yielding as it is believed to exhibit more ductility than other limit states. However, computational and experimental studies on the shear yielding limit state are limited. Additionally, the transition between shear dominated and flexural dominated limit states has not been previously investigated. Hence, a systematic and thorough study on the different limit states of these structural fuse shapes is necessary to provide better understanding on the structural behavior of each shape and accurately predict the controlling limit state during a seismic event. In addition, a previous study recognized that delaying shear buckling while promoting yielding is a way to improve the seismic performance of shear-acting structural fuses. However, the resulting new topologies were not experimentally validated. Furthermore, the computational study revealed that large localized plastic strain is one major challenge for these optimized configurations which might lead to potential for fracture.
With the goals of filling the gaps in previous research, a computational and experimental program was conducted to (1) understand seismic performance of five structural fuse shapes, (2) develop a new ductile structural fuse shape with both buckling and fracture resistance, and (3) create design guidelines for practical design. This study consisted of the following parts (a) Creation of a new structural fuse shape called the Tied Butterfly Shape, (b) An experimental program with 20 specimens categorized into five groups including the shape created using topology optimization to resist buckling, the new shape called Tied Butterfly Shape, the butterfly shape, the hourglass shape and the elliptical holes, (c) Use of finite element models to better understand and interpret test data, (d) Two computational parametric studies conducted to investigate the effect of geometrical parameters on structural behavior of the optimized shape and Tied Butterfly Shape, (e) Development of design recommendations for each structural fuse shape.
The computational and experimental results reported in this dissertation demonstrate that these structural fuse shapes are capable of improving the seismic performance of buildings. The presented design recommendations allow designers and researchers to continue exploring these structural fuse shapes. / Doctor of Philosophy / Structural fuses are ductile elements of a structure that are designed to yield and protect the surrounding members from damage, and then be replaceable after a major seismic event. Several studies on various cutout patterns for shear-acting structural fuses including butterfly-shaped links, hourglass-shaped links, elliptical holes, and link shapes obtained from topology optimization, reported that they offer several advantages for use in structural systems. Nevertheless, systematic studies on key limit states of these structural fuse shapes are limited. In addition, some analytical results have not been validated by experiments.
The research work provides a comprehensive study on these structural fuse shapes. First, generalized design equations are derived using plastic mechanism analysis and key limit states of these structural fuse shapes are investigated. Second, an experimental program was conducted to further understand the cyclic behavior of these shapes associated with each limit state (i.e flexural yielding, shear yielding, lateral torsional buckling, transition between the flexural and shear yielding limit states). Then, nonlinear finite element modeling was implemented to validate against experimental results and provide better understanding of the behavior of the specimens which is not obvious during the test. Lastly, design recommendations are developed for each structural fuse shape.
|
2 |
Experimental And Numerical Investigation Of Buckling Restrained BracesEryasar, Mehmet Emrah 01 February 2009 (has links) (PDF)
A typical buckling restrained brace (BRB) consists of a core segment and a buckling restraining mechanism. When compared to a conventional brace, BRBs provide nearly equal axial yield force in tension and compression. Buckling restraining mechanism can be grouped into two main categories. Buckling is inhibited either by using a concrete or mortar filled steel tube or by using steel sections only. While a large body of knowledge exists on buckling restrained braces the behavior of steel encased BRBs has not been studied in detail. Another area that needs further investigation is the detailing of the deboding material. For all types of BRBs a debonding material or a gap has to be utilized between the core brace and the restraining mechanism. The main function of the debonding material is to eliminate the transfer of shear force between the core brace and the restraining mechanism by preventing or reducing the friction. A two phase research study has been undertaken to address these research needs. In the first phase an experimental study was carried out to investigate the potential of using steel encased BRBs. In the second phase a numerical study was conducted to study the friction problem in BRBs. The experimental study revealed that steel encased braces provide stable hysteretic behavior and can be an alternative to mortar filled steel tubes. Material and geometric properties of the debonding layer for desired axial load behavior were identified and presented herein.
|
3 |
Amortisseurs passifs non linéaires pour le contrôle de l’instabilité de flottement / Influence of nonlinear passive aborbers on the flutter instabilityMalher, Arnaud 17 October 2016 (has links)
Cette thèse est consacrée à l'étude d'amortisseurs passifs non linéaires innovants pour le contrôle de l'instabilité de flottement sur un profil d'aile à deux degrés de libertés. Lorsqu'un profil d'aile entre en flottement, il oscille de façon croissante jusqu'à se stabiliser sur un cycle limite dont l'amplitude peut être significative et détériorer sa structure. Le contrôle a ainsi deux objectifs principaux : retarder l'apparition de l'instabilité et réduire l'amplitude des cycles limites. Avant d'étudier l'influence des amortisseurs passifs, l'instabilité de flottement, et notamment le régime post-flottement, a été étudié. Une expérience de flottement sur une plaque plane a été menée et sa modélisation, prenant en compte le phénomène de décrochage dynamique, a été réalisée. Concernant le contrôle passif, le premier type d'amortisseur étudié est un amortisseur hystérétique réalisé à l'aide de ressorts en alliage à mémoire de forme. La caractéristique principale de tels amortisseurs est que leur force de rappel étant hystérétique, elle permet de dissiper une grande quantité d'énergie. L'objectif principal est ainsi de réduire l'amplitude des cycles limites provoqués par l'instabilité de flottement. Cet effet escompté a été observé et quantifié expérimentalement et numériquement à l'aide de modèles semi-empiriques. Le second type d'amortisseur utilisé est un amortisseur non linéaire de vibration accordé. Il est composé d'une petite masse connectée au profil d'aile à l'aide d'un ressort possédant une raideur linéaire et une raideur cubique. La partie linéaire de ce type d'amortisseur permet de retarder l'apparition de l'instabilité tandis que la partie non linéaire permet de réduire l'amplitude des cycles limites. L'influence de l'amortisseur non linéaire de vibration accordé a été étudiée analytiquement et numériquement. Il a été trouvé que l'apparition de l'instabilité est significativement retardée à l'aide de cet amortisseur, l'effet sur l'amplitude des cycles limites étant plus modeste. / The aim of this thesis is to study the effect of passive nonlinear absorbers on the two degrees of freedom airfoil flutter. When an airfoil is subject to flutter instability, it oscillates increasingly until stabilizing on a limit cycle, the amplitude of which can be possibly substantial and thus damage the airfoil structure. The control has two main objectives : delay the instability and decrease the limit cycle amplitude. The flutter instability, and the post-flutter regime in particular, were studied first. A flutter experiment on a flat plate airfoil was conducted and the airfoil behavior was modeled, taking into account dynamic stall. Regarding the passive control, the first absorber studied was a hysteretic damper, realized using shape memory alloys springs. The characteristic of such dampers is their hysteretic restoring force, allowing them to dissipate a large amount of energy. Their main goal was thus to decrease the limit cycle amplitude caused by the flutter instability. This expected effect was observed and quantified both experimentally and numerically, using heuristic model. The second absorber studied was a nonlinear tuned vibration absorber. This absorber consists of a light mass attached to the airfoil through a spring having both a linear and a cubic stiffness. The role of the linear part of such absorber was to repel the instability threshold, while the aim of the nonlinear part was to decrease the limit cycle amplitude. It was found, analytically and numerically, that the instability threshold is substantially shifted by this absorber, whereas the limit cycle amplitude decrease is relatively modest.
|
Page generated in 0.0552 seconds