• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 22
  • Tagged with
  • 82
  • 82
  • 82
  • 82
  • 82
  • 55
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Structural hybrid simulation with model updating of material constitutive model

Mei, Zhu January 2018 (has links)
When hybrid simulation (HS) with substructures is employed for assessing the seismic behavior of a large complex structure, it is unrealistic to test all the components that may exhibit strong nonlinearity. Hence, the accuracy of the numerical substructure (NS) faces an increased challenge. To this end, this paper will emphasize on improving the accuracy of the NS in hybrid simulation based on the model updating approach. Most hybrid simulations with model updating (UHS) focus on updating the parameters of the component constitutive model (story shear model) leading to large modeling errors and the unknown detail responses. Moreover, the most extensively used component constitutive models, such as the Bouc-Wen model, are the models in a narrow sense because they are different for various RC members when the size of the component, boundary conditions, axial compression ratio, and the volumetric stirrup ratio are different from one component to the other. Thus, numerous parameters are needed to describe the displacement-force relations of different components, which leads to the huge computational burden. With this respect, this paper proposes a novel hybrid simulation approach based on identifying and updating the parameters of the material constitutive model. The main work and results are concluded as follows, 1. The unified constitutive model of unconfined and confined concrete is derived from the existing uniaxial concrete constitutive models by introducing the volumetric stirrup ratio. 2. To solve the problem that the relation of the measurements (force of the specimen of a RC member) and the identified parameters (concrete constitutive parameters) are difficult to analytical expressed, an OpenSees embedded unscented Kalman filter is proposed for parameter identification. To this end, several parts of the OpenSees source codes are developed and modified. 3. The proposed identification method and hybrid simulation based on updating the concrete constitutive parameters are respectively validated through a monotonic loading test on a RC column and a UHS on a RC frame. The results show that the convergence values of each parameter under various experimental cases are close to each other with a small variance, which indicates that the proposed identification method is robust and reliable. Comparing to the standard HS, the accuracy of the NS, hence the UHS, is significantly improved. 4. Apply the proposed UHS to a RC continuous rigid bridge with tall thin-walled piers. It concludes that the performance of the identification method is still quite good. Contrasting to the simpler structure, the improved accuracy of a large complex structure is even greater. Moreover, the accuracy of the NS can be greatly increased even though the model error is increased. By tuning the initial values of constitutive parameters, the negative influence of model error is decreased to further improve the precision of the NS. By observing the specimen, it is found that the thin-walled hollow section specimen is a bending-shear type damage mode and finally damaged due to the tensile rupture of the stirrup.
62

Retrofit of Existing Bridges with Concept of Integral Abutment Bridge: Static and Dynamic Parametric Analysis

Xue, Junqing January 2013 (has links)
The integral abutment bridge (IAB) constituted by the superstructure and the substructure can achieve a composite action responding as a single structural unit by eliminating or reducing expansion joints and bearings. Accordingly, the construction and maintenance costs can be reduced. Therefore, the IAB concept has recently become a topic of remarkable interest among bridge engineers, not only for newly built bridges but also during refurbishment processes. The research topic concerns the retrofit of existing bridges with the IAB concept. In order to investigate the retrofitting technique with the IAB concept, the literature survey on the practical applications of this approach in worldwide was carried out firstly, including retrofitting motivations, detailed processes and structural performance after retrofitting. Besides, another literature review on the critical issues of analysis on the IAB, such as soil-structure interactions, modelling approaches and plastic hinge simulations, was conducted in order to find out the most suitable method in modelling. The case study of a simply supported prestressed concrete bridge (named Viadotto Serrone) with three spans constructed in 1972 was analyzed, which has some durability problems nowadays. The finite element model was built, involving soil-structure interactions, non-linear behaviors and retrofitting processes. The original and updated Italian design codes are compared through static analysis and seismic analysis. Another investigation was conducted to prove the necessity of considering soil-structure interactions in the IAB. Based on the appropriate finite element model, a large number of static sensitive analyses were carried out, taking thermal actions; bridge types; soil conditions and substructure heights as parameters. Through analysing the responses of girders, piers, abutment stems and piles, some important factors and the corresponding influence were found, which could be adopted to guide the retrofitting technique with the IAB concept. Then, the verification was conducted in order to check if the existing sections could be reused without any changes and point out the most critical components, which need to be repaired or replaced. Moreover, the dynamic performance of bridge before and after retrofitting was investigated preliminarily through modal analysis and response spectrum analysis.
63

Comportamento strutturale di sistemi costruttivi in legno realizzati con pareti portanti intelaiate = Structural behavior of timber framed buildings

Sartori, Tiziano January 2012 (has links)
The research hereinafter describes aims at mechanically characterize the behavior of timber framed buildings, with particular focus on their behaviour in seismic zones. An extensive experimental campaign divided into three phases has been completed in order to achieve this objective. In the first phase tests on the connection between sheating panels and timber studs were conducted. Subsequently the behavior of the connections used for anchoring the walls to the foundation were investigated. In the second stage the full scale timber framed walls were subjected to tests. The walls were realized using different materials and different type of connections to the ground. The results have allowed the study of the individual structural components which constitute an entire building, from the single connector to the entire wall. In order to understand the behavior of the components themselves in a real building, and thus their interaction with each other in case of an earthquake, in the third step a shaking table test of a three-story building has been done. All tests have permitted to collect a wealth of data with which to populate a database to be used both to understand in detail the structural behavior of the timber framed building system and in also to validate the proposed formulations. From the analytical point of view, an equation able to provide the horizontal displacement of a wall subject to a horizontal force has been developed. This equation was then successfully validated by comparing the results with those obtained from laboratory tests. For the execution of the tests have been created procedures and set-up ad hoc, that could be used also in the future to carry out similar tests. An important work has been done to achieve a configuration suitable to test full scale timber framed walls through well controlling the boundary conditions.
64

Experimental investigations on seismic Behaviour of Light Timber framed Buildings and log-house traditional constructive System

Grossi, Paolo January 2015 (has links)
This document presents a part of the wide research carried out on modern timber buildings by the timber research group of the University of Trento. In the last five years several experimental and numerical analysis have been performed on crucial structural topics about multistorey timber construction. The efforts have been focused on the traditional light timber framed system (LTF) and on the log-house system (LH). Concerning the LTF, different aspects of the structural behaviour to the lateral load bearing structure such as walls and connection devices were investigated through experimental tests from the single component up to the full-scale building tested on shake table. The goals of these capstone tests, carried out on three-storey buildings, were the investigation of peculiar aspects which especially for the European constructive tradition were not sufficiently discussed. The same layout was follow for the traditional log-house system. In a first step of the research campaign the behaviour of single components (joints, reinforce elements) was tested and analysed in order to form the basis of the second part that was dedicated to the full scale shear walls tests and analysis. The thesis is organized in two main parts. In the opening chapters, after a brief introduction to the constructive system, the seismic behaviour of light timber framed constructions is analysed. The validation of the predictive models and the mechanical characterization of the gypsum fibreboard sheathing material are presented. Different steps of the S.E.R.I.E.S. project are summarized (tests on connection and real scale walls - shake table tests). The aim of the discussion is the deeper understanding of the boundary condition and the reliability of the tests on the single component on the real scale model. In the second part, the mechanical characterization of modern timber log-house building through experimental tests is presented. The strong cooperation among Rubner Haus Company and the timber research group of the University of Trento made possible a detailed experimental campaign organized on two steps. The first is focused on the evaluation of the corner joints proprieties by means of analysis of small portion of walls. The second part deals with the behaviour of full-scale walls with vertical loads in different geometries (corner joints types, length and presence of openings). The two innovative test setup were designed to reproduce the boundary condition of the structural elements of the building, and to minimize the effects of the test pparatus on the results. The outcomes of the tests show a complex interaction between contributions provided by different mechanisms. In the last chapters, a simplified model suitable to predict the overall load displacement curves of the wall is introduced.
65

Analysis and Development of an Innovative Prefabricated Beam-to-Column Joint

Mazzarolo, Enrico January 2012 (has links)
The use of pre-fabricated concrete components and their related coupling systems in seismic engineering constitutes a subject of wide and deep interest among researchers, practitioners and manufacturers all over the world, as demonstrated by a large number of studies conducted, among other Countries, especially in Japan, New Zealand and United States since the early ‘80s and, in relatively more recent times, in Italy. A key issue is given by the possibility to apply the typical benefits of the pre-fabrication not only to low rise industrial/commercial structures, but also to multi-storey frames for public and strategic buildings such as schools, hospitals and many others, as well as to high-rise residential premises built in areas characterized by a medium to high seismic intensity. On the basis of what stated above, an original structural system made by prefabricated composite steel truss-concrete beams and centrifuged high-strength concrete columns is presented in the following. Specifically designed joints are provided to couple the different structural components in order to guarantee an overall ease of construction with reduced tolerance problems and self-bearing capacity during temporary erection phases, with a consequent reduction in schedule and costs. The use of high performance concrete for columns allows for a high bearing capacity with limited overall dimensions and the consequent maximization of the commercial or saleable space. The original layout of the system proposed has led to the need to perform an intensive theoretical and experimental research activity. The finite element model of the structural system was calibrated upon both static and cyclic testing evidence carried out on full scale samples built in Italy and tested at the Tongji University-Shanghai, China. On the basis of the data collected, the tuned model was used to carry out further analyses and to deepen the specific knowledge on several further aspects, as specified in the following. Firstly, an estimation of the joint’s strength domain, suitable for everyday’s design was carried out based on a component-approach. Then, a structural optimization on the component used to guarantee hogging and sagging bending moment resistance to the joint, was carried out in order to achieve the minimization of the construction material employed. Furthermore, the estimation of the seismic performance of the joint, based on the evaluation of a purposely defined vulnerability parameter, supplied encouraging results with reference to the applicability of the investigated technology over most of the National territory. Finally an improved layout of the joint, with reference to confined concrete and the related possibility to achieve a suitable seismic response also at edge joints, is presented.
66

Displacement Capacity of Load-Bearing Masonry as a Basis for Seismic Design

Guidi, Giovanni January 2011 (has links)
The masonry still one of the widespread construction system for low-rise residential buildings even for countries prone to seismic risk. Seismic design methods yet in use are based on idea that controlling forces is better way to control earthquake induced damages. In recent decades, however, was highlighted as the differences in strength between two levels of damage is low, and therefore as the damage is better correlated to the displacement. Also, in recent years, has arose a widespread expectation for being able to control the damage based on the probability of occurrence of an earthquake or being able to base the design on different performance levels ("performance-based design"). In this context, the design of masonry buildings needs to develop these design methods. The results of experimental tests performed at the University of Padua in the recent years on different masonry systems both reinforced and unreinforced with different horizontal and vertical joints typologies, which were aimed to characterization under combined in-plane vertical and horizontal cyclic loading, were used to make different strategies of finite element modeling that reproduce and extend the experimental results using parametric analyses. These analyses allow a comparison and a validation of an analytical model which was then developed. This model is able to reproduce the envelope curves of the cyclic shear-compression tests and it is able to interpret the performances of panels linking them with limit states resulting from integration of cross-section equilibrium equations. Finally, it was applied a model able to reproduce the hysteretic behavior of masonry and were carried out dynamic analyses using the input data derived from the envelope curves. The data thus collected can be used as database and as input for displacement-based design methods.
67

Impact of Seismic Vulnerability on Bridge Management Systems

Yue, Yanchao January 2011 (has links)
Motivated by the potential vulnerability of their road infrastructure, many national authorities and local Departments of Transportation are incorporating seismic risk assessment in their management systems. This Dissertation aims to develop methods and tools for seismic risk analysis that can be used in a Bridge Management System (BMS); helping bridge owners to assess the costs of repair, retrofit and replacement of the bridges under their responsibility. More specifically, these tools are designed to offer estimates of: (1) the seismic risk to single components of bridges and their expected performance after an earthquake. (2) the impact a priori (i.e. before an earthquake) of a given earthquake on the operation of a road network, in terms of connectivity between different locations. (3) the damage a posteriori (i.e. after an earthquake) to road network operation, based on prior knowledge of network vulnerability and on the observed damage to a small number of single bridges. The effectiveness of these methods is tested and validated in a specific case study, the bridge stock of the Autonomous Province of Trento (APT) in Italy. To address the first point, I will first introduce the fragility curve method for risk assessment of individual bridges. The Hazus model is chosen as the most appropriate and is applied to the bridges of the APT stock. Once the fragility curves for all the bridges have been generated, a risk analysis is performed for three earthquake scenarios (with return periods of 72, 475 and 2475 years) and four condition states (operational, damage, life safety and collapse limit state). Next, I will extend the results of the component level analysis to the network level: the APT road network is modeled in the form of a graph and the problem of connectivity between two locations is analyzed. A shortest path algorithm is introduced and implemented to identify the best path between any two given places. Correlation in capacity and demand among bridges is not considered at this stage. After reiterating the fundamentals of probability theory, the theory of Bayesian Networks is introduced. The Bayesian Network approach is used to incorporate mutual correlation in capacity and demand, in risk assessment of a bridge stock. The concept is first formulated and illustrated on a simple case (the ‘twin bridge problem’), then extended to the general case of a full stock. I will show how the same framework can be used in post-earthquake assessment problems, where the evidence of the state of one or more bridges affects the prediction of the performance of another bridge. The outcomes and the limits of this work are discussed at the end of the Thesis.
68

Numerical Modelling of Unreinforced Masonry Infill Walls under Seismic Load Considering In-Plane / Out-Of-Plane Interaction

Longo, Francesco January 2016 (has links)
Many studies and post-earthquake investigations have recognized that masonry infill walls play a major role in the seismic response of structures. Although their effect may be beneficial in some situations, the walls are also susceptible to high levels of damage, including collapse that can be life-threatening because of the heavy debris. Despite the critical importance of infill walls for life safety, infill walls are often neglected in numerical models and analyses implemented by designers because they are traditionally considered to be non-structural elements. Moreover, the majority of experimental studies and numerical models include only the in-plane behaviour of the panels: indeed, until recently, only sophisticated micro-models incorporated the out-of-plane response of unreinforced masonry infill walls. Recently, however, researchers have started to advance proposals for simplified macro-models that are capable of modelling in-plane/out-of-plane interaction, paving the way for the consideration of the associated issues in design practice. However, very few studies have applied these models to the dynamic seismic response history analysis of realistic structures. In this context, this thesis focuses on the numerical modelling of unreinforced masonry (URM) infill walls, with particular attention to the combined in-plane/out-of-plane response of panels in reinforced concrete (RC) frame buildings during seismic events. In the first part of this research, existing studies for URM masonry infill walls are reviewed, with an emphasis on the out-of-plane response of the panels. Significant experimental tests, modeling strategies and post-earthquake surveys are presented, stressing the parameters that influence the behaviour of the infills. An in-depth description is dedicated to the infill wall macro-model that is adopted for the analyses performed in this work, emphasizing its capabilities and limitations. This model consists of a single diagonal formed by two beam elements representing the wall; lumped modal mass is concentrated at the midpoint node of the diagonal. In-plane axial force and out-of-plane bending of the equivalent element interact by means of two fibre sections located adjacent to the central node. User defined domains limit axial/bending strengths and in-plane/out-of-plane ultimate displacements of the wall. When the response of an element exceeds these domains, the model simulates the collapse of this infill wall by removing it from the analysis. Next, the numerical model is calibrated in the OpenSees software framework by comparing existing experimental results with numerical outputs. The laboratory tests comprise in-plane cyclic and out-of-plane quasi-static results on 1-bay and 1-storey frame specimens with two different types of clay URM infill walls that are frequently found in Italian and other Mediterranean countries. The calibrated model is then applied to the static pushover analysis of a set of planar frames, while the wall elements are simultaneously loaded in both orthogonal directions. The nucleus of present study is the application of the calibrated model to the dynamic response history analysis of planar RC frames. Frame dimensions, number of stories, design and infill configurations are selected to be representative of the Italian building stock. Acceleration time histories consist of a suite of a bidirectional ground motions that are scaled to be compatible with Eurocode 8 elastic spectra. Cracking and collapse of the infill walls are monitored during the analysis. The infill walls reach their ultimate displacement capacity by a combination of in-plane and out-of-plane displacements, with the out-of-plane component usually playing the dominant role. The intensity of seismic load that is required to fail the infill walls, as well as the patterns of failure, are shown to be consistent with observed damage to URM infill walls in similar buildings during recent earthquakes. This research suggests that simplified macro-elements are suitable for design-oriented models of URM infill walls in RC framed structures, capturing the critical interaction between in-plane and out-of-plane response of the infill walls but without making the models excessively complex.
69

Analysis and development of nonlinear Finite Elements for modelling steel structures at ambient and elevated temperature

Morbioli, Andrea January 2017 (has links)
This thesis work aims to successively analyze and develop "ex novo" problems concerning the use of finite elements for the analysis of issues characterized by high plasticity, geometrical and material nonlinearity, large displacements and rotations; all combined with the effect of temperature on the material mechanical properties. The ultimate objective of the work is the analysis and development of nonlinear Finite Elements devoted to the modelling of steel structures at ambient and elevated temperature. Three different experiences will be analyzed in this elaborate; each of them characterised by specific issues that may be involved in the analysis via finite element method of steel structures at ambient and elevated temperature. At the same time innovative aspects that are related, for example, to the particular typology of the analyzed case study (first case) or in the methodology used in the treatment of the problem (second and third case) are investigated. The thesis structure chronologically retraces this path and the results and the experience gained from each of them were exploited to ultimately implement a thermomechanical finite element that is expression of all the tackled problems. The thesis consists of a collection of three papers that have been published or submitted on each of the investigated topics. In detail: - In the first paper, a commercial finite-element code, of the type "multipurpose", such as ANSYS has been used for the analysis of innovative cold-formed, laterallyrestrained steel rectangular hollow flange beams subjected to monotonic bending test. The numerical analysis has been carried out by means of the direct comparison with experimental tests on real scale specimens; that has allowed the detection of some phenomenological problems that have been included in the model calibration. From a numerical point of view, this work has at first allowed to deeply investigate the plastic problem by means, for example, the appropriate identification of the constitutive laws for the material, the correct choice of hardening law and yield surface, and their impact on the model. The local buckling problem typical of these profiles has been evaluated, through the use of shell elements. Furthermore, the effect of the global and local imperfections, which have been introduced in the model with different amplitudes, has been deeply investigated by evaluating their effect on the ultimate load. The calibration of the model finally allowed to perform a series of parametric analyses in order to extend the results to an extended range of profiles, characterized by different slenderness. - In the second paper, the thermal problem has been introduced with the support of a finite element software, designed specifically for thermomechanical analysis (SAFIR). The case study is, in this case, based on a multi-storey steel-concrete composite open car park subjected to localized fire of vehicles. With this study, not only the plastic problem has been analyzed but also phenomena such as the effect of high geometrical nonlinearity and large displacements on the structure in addition to the temperature effect on materials mechanical properties. The case study has been used to evaluate the assumptions and the issues that arise when developing an innovative integrated modelling methodology between a computational fluid dynamics (CFD) software applied to compartment fires and a finite element (FE) software applied to structural systems. Particular emphasis has been given to the weak coupling approach developed between the CFD code fire dynamics simulator (FDS) and the FE software SAFIR. - In the third and last paper all the experiences obtained from the previous works have been focused on the implementation, inside the MATLAB environment, of a thermomechanical beam finite element based on the co-rotational beam theory for the analysis of two-dimensional frames heated under high temperature and subjected to plastic deformation and to the effect of geometrical nonlinearity. The finite element is mainly aimed at the study of steel structures, with double-symmetrical profiles such as IPE or HE cross sections, and could then be used as a modelling tool for typical frames subjected to thermal actions. The element implements both Euler-Bernoulli and Timoshenko beam theories and can analyse slender to moderately stocky structures. A co-rotational formulation was used for describing the beam kinematic. The degradation of the steel mechanical properties at high temperature according to the Eurocode 1993-1-2 was considered by integrating the material constitutive law based on a predetermined temperature field in the cross section. An improved displacement predictor for estimating the displacement field at the beginning of each time step was successfully implemented and allowed to significantly decrease the computational time. Furthermore, advanced path-following methods that detect secondary equilibrium paths owing to instability occurrence were implemented in order to analyse the elasticplastic post-buckling behaviour of compressed steel elements at high temperature without the need of introducing geometrical imperfections. In order to show the potential of the developed finite element by highlighting the practical implications, a parametric analysis was performed to show whether the element could reproduce the EN1993-1-2 buckling curve. Validation against experimental and numerical data obtained with commercial software like ABAQUS and SAFIR is thoroughly shown in the paper.
70

Theory of Decision Based on Structural Health Monitoring

Cappello, Carlo January 2017 (has links)
The average age of strategic constructions in the Western world is becoming higher and higher. Many of these structures need inspection, maintenance or replacement, resulting in significant costs. The accurate estimate of structural condition can make operators optimize the allocation of resources. Nowadays, the progress of technology and machine learning has made structural health monitoring appealing to the agencies that manage important structures. This has encouraged the research community in the study of new structural health monitoring methods. In spite of this, the use of monitoring data is often disregarded by practitioners, who still prefer to gather more information and then act based on experience. Similarly, unlike the design of civil structures, the design of structural health monitoring systems is carried out based on heuristics rather than on rigorous evaluations of the expected monitoring system effectiveness. In this doctoral thesis, I apply expected utility theory for the development of decision support systems to be used in structural health monitoring and I develop a procedure for the design of structural health monitoring systems that follows the scheme of semi-probabilistic structural design. The use of monitoring data in a decision support system that implements expected utility theory financially optimizes the management of civil structures. The proposed monitoring system design method enables practitioners to design monitoring systems using their experience and guarantees that the installation of a monitoring solution is financially convenient. I present the mathematical formulation for monitoring-based decision support systems and monitoring system design. Then, I propose the numerical algorithms for the development of monitoring-based decision support systems and solutions for monitoring data analysis. Finally, the proposed methods are applied to three case studies, which enabled me to discuss the application in real life and the hypotheses. The applications show also the feasibility of the proposed approaches and test the numerical algorithms.

Page generated in 0.1459 seconds