• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation l’immunité électromagnétique des composants en vue de la gestion de l’obsolescence des systèmes et modules électroniques. / Electromagnetic immunity modeling of components for the obsolescence management of systems and electronic modules

Amellal, Mohammed 14 December 2015 (has links)
Dos nos jours, l'évolution croissante des domaines d'application des circuits intégrés impose aux industriels de nouvelles contraintes de conception. Afin de réaliser des circuits électroniques plus denses et plus performants, ils cherchent à faire cohabiter plusieurs types de composants sur des surfaces plus petites et de surcroît, fonctionnant à des fréquences de plus en plus élevées. Cependant, cette cohabitation pourrait générer des problèmes de CEM (compatibilité électromagnétique). Les travaux présentés dans ce mémoire rentrent dans le cadre du projet de recherche SEISME (Simulation de l'Emission et de l'Immunité des Systèmes et Modules Electroniques). Ils décrivent des méthodologies de mesure et de modélisation de’immunité conduite des circuits intégrés complexes comme les mémoires non volatiles ou bien les microcontrôleurs. L'objectif est d'étudier l'influence des changements de composants et de cartes sur le comportement électromagnétique d'un système électronique. Dans cette perspective, afin de valider son utilisation dans le cas des circuits intégrés complexes, une étude détaillée du standard de mesure DPI (Direct Power injection) est d'abord proposée. Basé sur cette dernière, un nouveau prototype de chemin de couplage est réalisé. Ce multiplexeur permet de superposer un signal agresseur à un signal fonctionnel, avec un chevauchement de leurs bandes de fréquences. Ainsi, il est possible d'agresser une broche fonctionnelle (horloge par exemple) d'un circuit intégré pendant son fonctionnement. Ensuite, une procédure de mesure globale d'immunité conduite est présentée. Elle permet de caractériser la susceptibilité conduite des circuits complexes en tenant compte des différents modes de fonctionnement et avec la possibilité d’utiliser un critère d’immunité fonctionnel ou électrique. Grâce à l'application de cette procédure à deux mémoires non volatiles compatibles broche à broche (mêmes caractéristiques mais de deux différents fournisseurs), il est possible de constater l’influence des technologies de fabrication sur l’immunité conduite de ce type de circuits. Par conséquent, l’effet du changement de composant sur le comportement électromagnétique d’un système électronique devient prédictible. Enfin pour la modélisation, deux méthodologies sont proposées. Une au niveau composant et l'autre au niveau carte. La démarche de modélisation au niveau composant repose sur le standard ICIM-CI (Integrated Circuit Immunity Model-Conducted Immunity) et vise à générer un modèle d’immunité simulable et prédictif. Grâce à l'application de cette démarche dans le contexte des mémoires non volatiles, il est possible de prédire leur immunité dans le cas de modification de l’impédance d'entrée par rajout d'éléments de filtrage par exemple. En ce qui concerne la modélisation au niveau carte, une procédure basée sur la proposition de modèle EBIM-CI (Electronic Board Immunity Model-Conducted Immunity) est développée. Elle consiste à générer un modèle d’immunité d’une carte électronique en utilisant les modèles des différents composants qui la constituent. Un cas d’étude a été défini. Le modèle issu de cette approche permet de simuler l’immunité conduite globale du démonstrateur ainsi que de prédire le comportement électromagnétique de ce dernier lors du changement d’un ou plusieurs composants. / Nowadays, the growing evolution of application fields for integrated circuits sets new constraints for designers and manufacturers. Due to continuous technological advances in integrated circuits, those have become smaller, denser and operational at higher frequencies. The miniaturization of integrated circuits has led to the reduction of power consumption and, thus, noise margins. Mixing digital and analog functions inside the same chip also makes electromagnetic interferences (EMis) more likely to spread and cause disturbances. As a result, complex ICs with coexisting different functions represent a challenge from an EMC point of view, as interferences can cause critical functional failures. The work presented in this manuscript falls within the SEISME project which aims, among others, to perform the simulation of both the emission and the immunity of electronic systems and modules at different levels (JC, PCB, equipment, system). More precisely, this work deals with the development of measurement and modeling methodologies for the characterization of the conducted immunity of complex ICs, such as microcontrollers and non-volatile memories. The main goal is to study the effect of component and/or board replacement on the electromagnetic behavior of a complete electronic system. In this context, a thorough study of the Direct Power Injection (DPI) technique is presented, thus validating its use for complex integrated circuits. Based on this study, a new prototype for the disturbance coupling path is proposed. It consists of a multiplexer that enables the superposition of a disturbance signal and a functional one with overlapping frequency bands. Therefore, it is possible to disturb an IC functional pin (a clock for instance) during its operation. Moreover, measurement procedure for conducted immunity is introduced. Its advantage is to make it possible to characterize the immunity of complex ICs by taking into account different operation modes as well as flexible immunity criteria (electrical / functional). Thanks to the application of this methodology for two different, non-volatile, pin-to-pin-compatible memories (having the same characteristics but different manufacturers), the influence of fabrication technology on the conducted immunity of such ICs is better identified and understood. As a consequence, the effect of changing components on the electromagnetic behavior of an electronic system has become predictable. As far as modeling aspects are concerned, two methodologies are presented in this manuscript. The first one deals with the immunity at the component level whereas the other involves board level immunity. At the IC level, the modeling approach is rather based on the ICIM-CI (lntegrated Circuit Immunity Model-Conducted Immunity) draft standard which makes it possible to extract simulation models that can be incorporated within IC design flows. Once applied to the context of non-volatile memories, this approach allows predicting their immunity in the case of modified input impedance, for example. As far as immunity modeling at the board level is concerned, the idea is to make use of ICIM-CI models corresponding to different ICs on the PCB in order to construct an Electronic Board Immunity Model for Conducted Immunity (EBIM-CI). A case study has been defined and the extracted model makes it possible to simulate the demonstrator's global conducted immunity as well as to predict its electromagnetic behavior following the replacement of one or more components.
2

Développement de méthodologies pour l'extraction et la construction des macromodèles d'immunité électromagnétique appliqués aux circuits intégrés / Development of methodologies for the extraction of electromagnetic immunity macromodels applied to integrated circuits

Ayed, Ala 19 December 2014 (has links)
De nos jours, la modélisation de la compatibilité électromagnétique est devenue une étape importante de la conception des circuits intégrés permettant un gain sur les délais de validation et les coûts de production. Dans ces travaux de thèse, une contribution à la caractérisation et à la modélisation de la susceptibilité conduite des circuits intégrés est présentée. D’abord, une évolution substantielle de la technique RFIP est élaborée. Cette technique permet de caractériser la susceptibilité conduite des circuits intégrés. Nous avons montré les différentes étapes de caractérisation de la sonde de mesure développée ainsi que du banc de mesure en vue d’une extraction des paramètres d’immunité d’un circuit intégré soumis à des perturbations électromagnétiques. Le principe de la mesure RFIP a été validé par simulation et par mesure notamment lors de la caractérisation de l’immunité d’un convertisseur analogique-numérique embarqué dans un microcontrôleur. Ensuite, la méthodologie de construction de macromodèles d’immunité électromagnétique appliqués aux circuits intégrée est présentée. Le macromodèle construit du convertisseur est basé sur la structure du modèle ICIM-CI et ses paramètres sont extraits à partir des résultats de mesure RFIP. Les différentes approches de construction des blocs du macromodèle sont discutées. La technique RFIP s’est avérée avantageuse pour l’amélioration de la compréhension, la caractérisation et la modélisation de l’immunité des circuits intégrés. / Nowadays, electromagnetic compatibility modeling has become an importantstep during integrated circuits design which allows time-to-market and production costsreduction. In this PhD thesis, we present a contribution to the characterization and modelingof integrated circuits susceptibility to electromagnetic interferences. First, a substantialevolution of the RFIP technique, which represents a measurement technique of integratedcircuits conducted susceptibility, is presented. Different characterization steps of thedeveloped measurement probe as well as the measurement test bench are shown. RFIPmeasurement principle is validated through simulation and measurement, especially on ananalog-to-digital converter (ADC) embedded in a microcontroller. Then, the methodology ofthe extraction of the ADC’s immunity macromodel is explained according to the ICIM-CImodel structure. Macromodel’s parameters are deduced from RFIP measurement results.Different approaches for the construction of the macromodel’s blocks are discussed. RFIPtechnique shows many advantages leading to enhance understanding, characterization andmodeling of integrated circuits immunity.
3

La modélisation de l’immunité des circuits intégrés au-delà de 1 GHz / Integrated circuit immunity modelling beyond 1 GHz

Op 'T Land, Sjoerd 20 June 2014 (has links)
La compatibilité électromagnétique (CEM) est l'aptitude des produits électroniques à coexister au niveau électromagnétique. Dans la pratique, c'est une tâche très complexe que de concevoir des produits compatibles. L'arme permettant de concevoir des produits bon-du-premier-coup est la modélisation. Cette thèse étudie l'utilité et la faisabilité de la modélisation de l'immunité des circuits intégrés (CI) au-delà de 1 GHz. Si les pistes des circuits imprimés déterminent l'immunité rayonnée de ces circuits, il serait pertinent de pouvoir prévoir l'efficacité de couplage et de comprendre comment elle découle du routage des pistes. Les solveurs full-wave sont lents et ne contribuent pas à la compréhension. En conséquence, un modèle existant (la cellule de Taylor) est modifié de manière à ce que son temps de calcul soit divisé par 100. De plus, ce modèle modifié est capable de fournir une explication de la limite supérieure pour le couplage d'une onde plane, rasante et polarisée verticalement vers une piste de plusieurs segments, électriquement longue et avec des terminaisons arbitraires. Les résultats jusqu'à 20 GHz corrèlent avec des simulations fullwave à une erreur absolue moyenne de 2,6 dB près et avec des mesures en cellule GTEM (Gigahertz Transversale Electromagnétique) à une erreur absolue moyenne de 4,0 dB près. Si l'immunité conduite des CI est intéressante au-delà de 1 GHz, il faut une méthode de mesure, valable au-delà de 1 GHz. Actuellement, il n'y a pas de méthode normalisée, car la fréquence élevée fausse les observations faites avec la manipulation normalisée. Il est difficile de modéliser et de compenser le comportement de la manipulation normalisée. Par conséquent, une manipulation simplifiée et sa méthode d'extraction correspondante sont proposées, ainsi qu'une démonstration du principe de génération automatique de la carte d'essai utilisée dans la manipulation simplifiée. Pour illustrer la méthode simplifiée, l'immunité conduite d'un régulateur de tension LM7805 est mesurée jusqu'à 4,2 GHz. À part la tendance générale des fréquences qui montent, il y a peu de preuve concrète qui étaye la pertinence de la modélisation de l'immunité conduite des CI au-delà de 1 GHz. Une simulation full-wave suggère que jusqu'à 10 GHz, la plus grande partie de l'énergie rentre dans la puce à travers la piste. Par concaténation des modèles développés ci-dessus, l'immunité rayonnée d'une piste micro-ruban et d'un régulateur de tension LM7805 est prédite. Bien que ce modèle néglige l'immunité rayonnée du CI lui-même, la prédiction corrèle avec des mesures en cellule GTEM à une erreur absolue de 2,1 dB en moyenne. Ces expériences suggèrent que la plus grande partie du rayonnement entre dans un circuit imprimé à travers ses pistes, bien au-delà de 1 GHz. Dans ce cas, la modélisation de l'immunité conduite au-delà de 1 GHz serait utile. Par conséquent, l'extension jusqu'à 10 GHz de la méthode de mesure CEI 62132-4 devrait être considérée. De plus, la vitesse et la transparence du modèle de Taylor modifié pour le couplage champ-à-ligne permettent des innovations dans la conception assistée par l'ordinateur. La génération semiautomatique des cartes d'essais dites maigres pourrait faciliter l'extraction des modèles. Certaines questions critiques et importantes demeurent ouvertes. / Electromagnetic Compatibility (EMC) is the faculty of working devices to co-exist electromagnetically. In practice, it turns out to be very complex to create electromagnetically compatible devices. The weapon to succeed the complex challenge of creating First-Time-Right (FTR) compatible devices is modelling. This thesis investigates whether it makes sense to model the conducted immunity of Integrated Circuits (ICs) beyond 1 GHz and how to do that. If the Printed Circuit Board (PCB) traces determine a PCB's radiated immunity, it is interesting to predict their coupling efficiency and to understand how that depends on the trace routing. Because full-wave solvers are slow and do not yield understanding, the existing Taylor cell model is modified to yield another 100 times speedup and an insightful upper bound, for vertically polarised, grazing-incident plane wave illumination of electrically long, multi-segment traces with arbitrary terminal loads. The results up to 20 GHz match with full-wave simulations to within 2.6 dB average absolute error and with Gigahertz Transverse Electromagnetic-cell (GTEM-cell) measurements to within 4.0 dB average absolute error. If the conducted immunity of ICs is interesting above 1 GHz, a measurement method is needed that is valid beyond 1 GHz. There is no standardised method yet, because with rising frequency, the common measurement set-up increasingly obscures the IC's immunity. An attempt to model and remove the set-up's impact on the measurement result proved difficult. Therefore, a simplified set-up and extraction method is proposed and a proof-of-concept of the automatic generation of the set-up's PCB is given. The conducted immunity of an LM7805 voltage regulator is measured up to 4.2 GHz to demonstrate the method. Except for a general trend of rising frequencies, there is only little concrete proof for the relevance of IC immunity modelling beyond 1 GHz. A full-wave simulation suggests that up to 10 GHz, most energy enters the die via the trace. Similarly, the radiated immunity of a microstrip trace and an LM7805 voltage regulator is predicted by concatenating the models developed above. Although this model neglects the radiated immunity of the IC itself, the prediction corresponds with GTEM-cell measurement to within 2.1 dB average absolute error. These experiments suggest the most radiation enters a PCB via its traces, well beyond 1 GHz, hence it is useful to model the conducted immunity of IC beyond 1 GHz. Therefore, the extension of IEC 62132-4 to 10 GHz should be seriously considered. Moreover, the speed and transparency of the modified Taylor model for field-to-trace coupling open up new possibilities for computer-aided design. The semi-automatic generation of lean extraction PCB could facilitate model extraction. There are also critical remaining questions, remaining to be answered.

Page generated in 0.0235 seconds