• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Approach to Quantifying Uncertainty in Estimates of Intensity Duration Frequency (IDF) Curves

Alzahrani, Fahad 13 August 2013 (has links)
Generally urban drainage systems are built to protect urban property and control runoff. Moreover, these systems collect the runoff for storage purposes to serve society through sufficient water supply to meet the needs of demand, irrigation, and drainage. Urban environments are exposed to risks of extreme hydrological events. Therefore, urban water systems and their management are critical. Precipitation data are crucial, but may be prone to errors due to the lack of information e.g., short length of records. In this thesis, a Monte Carlo simulation and regional frequency analysis based on L-moments approach were utilized during the research in order to estimate the uncertainty in the Intensity Duration Frequency (IDF) curves by using historical precipitation data from Environment Canada (EC) weather stations and simulating a new series of data through a weather generator (WG) model. The simulations were then disaggregated from daily into hourly data for extraction of the annual maximum precipitation for different durations in hours (1, 2, 6, 10, 12, and 24). Regional frequency analysis was used to form the sites into groups based on homogeneity test results, and the quantile values were computed for various sites and durations with the return periods (T) in years (2, 10, 20, and 100). As a result, the regional frequency analysis was used to estimate the regional quantile values based on L-moment approach. Moreover, the box and whisker plots were utilized to display the results. When the return periods and durations increased, the uncertainty slightly increased. The historical IDF curves of London site falls within the regional simulated IDF curves. Furthermore, 1000 runs have been generated by using the weather generator.
2

An Approach to Quantifying Uncertainty in Estimates of Intensity Duration Frequency (IDF) Curves

Alzahrani, Fahad 13 August 2013 (has links)
Generally urban drainage systems are built to protect urban property and control runoff. Moreover, these systems collect the runoff for storage purposes to serve society through sufficient water supply to meet the needs of demand, irrigation, and drainage. Urban environments are exposed to risks of extreme hydrological events. Therefore, urban water systems and their management are critical. Precipitation data are crucial, but may be prone to errors due to the lack of information e.g., short length of records. In this thesis, a Monte Carlo simulation and regional frequency analysis based on L-moments approach were utilized during the research in order to estimate the uncertainty in the Intensity Duration Frequency (IDF) curves by using historical precipitation data from Environment Canada (EC) weather stations and simulating a new series of data through a weather generator (WG) model. The simulations were then disaggregated from daily into hourly data for extraction of the annual maximum precipitation for different durations in hours (1, 2, 6, 10, 12, and 24). Regional frequency analysis was used to form the sites into groups based on homogeneity test results, and the quantile values were computed for various sites and durations with the return periods (T) in years (2, 10, 20, and 100). As a result, the regional frequency analysis was used to estimate the regional quantile values based on L-moment approach. Moreover, the box and whisker plots were utilized to display the results. When the return periods and durations increased, the uncertainty slightly increased. The historical IDF curves of London site falls within the regional simulated IDF curves. Furthermore, 1000 runs have been generated by using the weather generator.
3

Updating Rainfall Intensity-Duration-Frequency Curves in Sweden Accounting for the Observed Increase in Rainfall Extremes / Uppdatering av Intensitets-Varaktighetskurvor i Sverige med hänsyn till observera- de ökande trender av extrem nederbörd

Eckersten, Sofia January 2016 (has links)
Increased extreme precipitation has been documented in many regions around the world, in- cluding central and northern Europe. Global warming increases average temperature, which in turn enhances atmospheric water holding capacity. These changes are believed to increase the frequency and/or intensity of extreme precipitation events. In determining the design storm, or a worst probable storm, for infrastructure design and failure risk assessment, experts commonly assume that statistics of extreme precipitation do not change significantly over time. This so- called notion of stationarity assumes that the statistics of future extreme precipitation events will be similar to those of historical observations. This study investigates the consequences of using a stationary assumption as well as the alternative: a non-stationary framework that con- siders temporal changes in statistics of extremes. Here we evaluate stationary and non-stationary return levels for 10-year to 50-year extreme precipitation events for different durations (1-day, 2-day, ..., 7-day precipitation events), based on the observed daily precipitation from Sweden. Non-stationary frequency analysis is only considered for stations with statistically significant trends over the past 50 years at 95% confidence (i.e., 15 to 39 % out of 139 stations, depend- ing on duration, 1-day, 2-day, ..., 7-day). We estimate non-stationary return levels using the General Extreme Value distribution with time-dependent parameters, inferred using a Bayesian approach. The estimated return levels are then compared in terms of duration, recurrence in- terval and location. The results indicate that a stationary assumption might, when a significant trend exists, underestimate extreme precipitation return levels by up to 40 % in Sweden. This report highlights the importance of considering better methods for estimating the recurrence in- terval of extreme events in a changing climate. This is particularly important for infrastructure design and risk reduction. / Ökad extrem nederbörd har dokumenterats globalt, däribland centrala och norra Europa. Den globala uppvärmningen medför en förhöjd medeltemperatur vilket i sin tur ökar avdunstning av vatten från ytor samt atmosfärens förmåga att hålla vatten. Dessa förändringar tros kunna öka och intensifiera nederbörd. Vid bestämning av dimensionerande nederbördsintensiteter för byggnationsprojekt antas idag att frekvensen och storleken av extrem nederbörd inte kommer att förändras i framtiden (stationäritet), vilket i praktiken innebär ingen förändring i klimatet. Den här studien syftar till att undersöka effekten av en icke-stationärt antagande vid skattning av dimensionerande nederbördsintensitet. Icke-stationära och stationära nerderbördsintensiteter föråterkomsttider mellan 10 och 100år bestämdes utifrån daglig och flerdaglig svensk nederbörds- data. Nederbördintensiteterna bestämdes med extremvärdesanalys i mjukvaran NEVA, där den generella extremvärdesfördelningen anpassades till årlig maximum nederbörd på platser i Sverige som påvisade en ökande trend under de senaste 50åren (15% till 39 % utav 139 stationer, beroende på varaktighet). De dimensionerande nederbördsintensiteterna jämfördes sedan med avseende på varaktighet, återkomsttid och plats. Resultaten indikerade på att ett stationärt antagande riskerar att underskatta dimensionerande nederbördsintensiteter för en viss återkomsttid med upp till 40 %. Detta indikerar att antagandet om icke-stationäritet har större betydelse för olika platser i Sverige, vilket skulle kunna ge viktig information vid bestämning av dimensionerande regnintensiteter.
4

Construction of the Intensity-Duration-Frequency (IDF) Curves under Climate Change

2014 December 1900 (has links)
Intensity-Duration-Frequency (IDF) curves are among the standard design tools for various engineering applications, such as storm water management systems. The current practice is to use IDF curves based on historical extreme precipitation quantiles. A warming climate, however, might change the extreme precipitation quantiles represented by the IDF curves, emphasizing the need for updating the IDF curves used for the design of urban storm water management systems in different parts of the world, including Canada. This study attempts to construct the future IDF curves for Saskatoon, Canada, under possible climate change scenarios. For this purpose, LARS-WG, a stochastic weather generator, is used to spatially downscale the daily precipitation projected by Global Climate Models (GCMs) from coarse grid resolution to the local point scale. The stochastically downscaled daily precipitation realizations were further disaggregated into ensemble hourly and sub-hourly (as fine as 5-minute) precipitation series, using a disaggregation scheme developed using the K-nearest neighbor (K-NN) technique. This two-stage modeling framework (downscaling to daily, then disaggregating to finer resolutions) is applied to construct the future IDF curves in the city of Saskatoon. The sensitivity of the K-NN disaggregation model to the number of nearest neighbors (i.e. window size) is evaluated during the baseline period (1961-1990). The optimal window size is assigned based on the performance in reproducing the historical IDF curves by the K-NN disaggregation models. Two optimal window sizes are selected for the K-NN hourly and sub-hourly disaggregation models that would be appropriate for the hydrological system of Saskatoon. By using the simulated hourly and sub-hourly precipitation series and the Generalized Extreme Value (GEV) distribution, future changes in the IDF curves and associated uncertainties are quantified using a large ensemble of projections obtained for the Canadian and British GCMs (CanESM2 and HadGEM2-ES) based on three Representative Concentration Pathways; RCP2.6, RCP4.5, and RCP8.5 available from CMIP5 – the most recent product of the Intergovernmental Panel on Climate Change (IPCC). The constructed IDF curves are then compared with the ones constructed using another method based on a genetic programming technique. The results show that the sign and the magnitude of future variations in extreme precipitation quantiles are sensitive to the selection of GCMs and/or RCPs, and the variations seem to become intensified towards the end of the 21st century. Generally, the relative change in precipitation intensities with respect to the historical intensities for CMIP5 climate models (e.g., CanESM2: RCP4.5) is less than those for CMIP3 climate models (e.g., CGCM3.1: B1), which may be due to the inclusion of climate policies (i.e., adaptation and mitigation) in CMIP5 climate models. The two-stage downscaling-disaggregation method enables quantification of uncertainty due to natural internal variability of precipitation, various GCMs and RCPs, and downscaling methods. In general, uncertainty in the projections of future extreme precipitation quantiles increases for short durations and for long return periods. The two-stage method adopted in this study and the GP method reconstruct the historical IDF curves quite successfully during the baseline period (1961-1990); this suggests that these methods can be applied to efficiently construct IDF curves at the local scale under future climate scenarios. The most notable precipitation intensification in Saskatoon is projected to occur with shorter storm duration, up to one hour, and longer return periods of more than 25 years.

Page generated in 0.0421 seconds