1 |
Communication in Microkernel-Based Operating Systems / Kommunikation in Mikrokern-basierten BetriebssystemenAigner, Ronald 25 May 2011 (has links) (PDF)
Communication in microkernel-based systems is much more frequent than system calls known from monolithic kernels. This can be attributed to the placement of system services into their own protection domains. Communication has to be fast to avoid unnecessary overhead. Also, communication channels in microkernel-based systems are used for more than just remote procedure calls. In distributed systems, which also have a componentized design, it is state of the art to use tools to generate stubs for the communication between components. The communication interfaces of components are described in an interface definition language (IDL). In contrast to distributed systems, components of a microkernel-based system run on the same architecture and message delivery is guaranteed.
In this Thesis, I explore the different kinds of communication, which can be used in microkernel-based systems, as well as their possible representation in IDL. Specifically, I introduce the syntax to describe kernel objects in IDL. I discuss the complexity of IDL compilers and its relation to the complexity of the IDL. Furthermore, I evaluate the performance of the communication stubs generated by different IDL compilers and discuss techniques to minimize performance overhead in generated stubs. I validated these techniques by implementing the Drops IDL Compiler - Dice. Finally, this Thesis presents a mechanism to measure the frequency and performance of invocations of generated communication code. I used this technique to conduct measurements in highly complex systems and introducing the least possible overhead.
|
2 |
Communication in Microkernel-Based Operating SystemsAigner, Ronald 21 January 2011 (has links)
Communication in microkernel-based systems is much more frequent than system calls known from monolithic kernels. This can be attributed to the placement of system services into their own protection domains. Communication has to be fast to avoid unnecessary overhead. Also, communication channels in microkernel-based systems are used for more than just remote procedure calls. In distributed systems, which also have a componentized design, it is state of the art to use tools to generate stubs for the communication between components. The communication interfaces of components are described in an interface definition language (IDL). In contrast to distributed systems, components of a microkernel-based system run on the same architecture and message delivery is guaranteed.
In this Thesis, I explore the different kinds of communication, which can be used in microkernel-based systems, as well as their possible representation in IDL. Specifically, I introduce the syntax to describe kernel objects in IDL. I discuss the complexity of IDL compilers and its relation to the complexity of the IDL. Furthermore, I evaluate the performance of the communication stubs generated by different IDL compilers and discuss techniques to minimize performance overhead in generated stubs. I validated these techniques by implementing the Drops IDL Compiler - Dice. Finally, this Thesis presents a mechanism to measure the frequency and performance of invocations of generated communication code. I used this technique to conduct measurements in highly complex systems and introducing the least possible overhead.
|
Page generated in 0.0511 seconds