• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 23
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Second language bias and accuracy of deception judgments

Van Vuuren, Hermanus Hendrik Janse 01 1900 (has links)
This study examined the ability of students to correctly discern between truthful and deceptive messages from a group of second language English speakers. Recent studies have found a ‘lie bias’ when making veracity judgments towards second language speakers. This lie bias may be problematic in a country such as South Africa where the majority of the population communicate, to a greater or lesser extent, in their second language. In this study participants (n=64) made classifications of 24 messages as either truthful or deceptive. The messages were created by second language English speakers who were asked to describe a truthful or deceptive event. The results revealed that there was a significant difference between the way that first and second language participants made their judgments. It is argued that this difference can be attributed to the notion that second language participants require more cognitive effort, than their first language counterparts, to understand and classify messages. / Psychology / M. A.(Psychology)
22

Investigation of asphalt compaction in vision of improving asphalt pavements

Ghafoori Roozbahany, Ehsan January 2015 (has links)
Asphalt joints are potentially weakest parts of every pavement. Despite of their importance, reliable tools for measuring their mechanical properties for design and performance assessments are still scarce. This is particularly true for cold joints when attaching a new hot pavement to a cold existing one as in case of large patches for pavement repair. In this study, three static fracture testing methods, i.e. indirect tensile test (IDT), direct tension test (DTT) and 4 point bending (4PB), were adapted and used for evaluating different laboratory made joints. The results suggested that joints with inclined interfaces and also the ones with combined interface treatments (preheated and sealed) seemed to show more promising behaviors than the vertical and untreated joints. It was also confirmed that compacting from the hot side towards the joint improved the joint properties due to imposing a different flow pattern as compared to the frequent compaction methods. The latter finding highlighted the importance of asphalt particle rearrangements and flow during the compaction phase as a very little known subject in asphalt industry. Studies on compaction are of special practical importance since they may also contribute to reducing the possibility of over-compaction and aggregate crushing. Therefore, in this study, a new test method, i.e. Flow Test (FT), was developed to simulate the material flow during compaction. Initially, asphalt materials were substituted by geometrically simple model materials to lower the level of complexity for checking the feasibility of the test method as well as modeling purposes. X-ray radiography images were also used for capturing the flow patterns during the test. Results of the FT on model materials showed the capability of the test method to clearly distinguish between specimens with different characteristics. In addition, a simple discrete element model was applied for a better understanding of the test results as a basis for further improvements when studying real mixtures. Then, real mixtures were prepared and tested under the same FT configuration and the results were found to support the findings from the feasibility tests. The test method also showed its potential for capturing flow pattern differences among different mixtures even without using the X-ray. Therefore, the FT was improved as an attempt towards developing a systematic workability test method focusing on the flow of particles at early stages of compaction and was called the Compaction Flow Test (CFT). The CFT was used for testing mixtures with different characteristics to identify the parameters with highest impact on the asphalt particle movements under compaction forces. X-ray investigations during the CFT underlined the reliability of the CFT results. In addition, simple discrete element models were successfully generated to justify some of the CFT results. / <p>QC 20151104</p>
23

Synthese von Indacenodithiophen-basierten Copolymeren mittels direkter C-H-Arylierungspolykondensation

Adamczak, Desiree 03 January 2022 (has links)
Organic semiconducting polymers are widely employed in organic electronics such as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs). Their remarkable mechanical and charge transport properties as well as solution processability allow low-cost fabrication of light-weight and flexible devices. Among them indacenodithiophene (IDT)-based materials are promising candidates for application in organic electronics. Due to their low energetic disorder, extended conjugation and high electron density the IDT-based polymers show high field-effect mobilities and high absorption coefficients. However, their synthesis suffers from long reaction sequences and is often accomplished using toxic materials. Commercialization requires development of more efficient and sustainable reaction pathways to ease tailoring of structures and to limit molecular defects. Herein, the development of new synthetic pathways towards IDT-based polymers is presented in which all C-C coupling steps are achieved by C-H activation – an atom-economic alternative to conventional transition-metal catalyzed cross couplings. Two different strategies were established to synthesize a series of well-defined IDT-based homo- and copolymers with different side chain patterns and varied molecular weights. The first way starts by synthesis of a precursor polymer and subsequent cyclization affording IDT homopolymers. In the second approach, cyclized IDT monomers were prepared first and then polymerized using direct arylation polycondensation (DAP) yielding IDT homo- and copolymers. The synthetic pathways were optimized in terms of maximizing molecular weights and limiting defect structures. While the first pathway enables synthesis of well-defined homopolymers, the latter is the method of choice for preparation of IDT-based copolymers in high yields and adjustable molecular weights. The polymers were further characterized in detail by optical, thermal, electrical and morphological analyses. OFETs as well as all-polymer solar cells (all-PSCs) were fabricated to investigate the influence of structural modifications and molecular weight on their optoelectronic performance. Thus, this thesis provides a comprehensive study of the structure-property correlations of IDT-based polymers and simplified synthetic protocols for the design and preparation of donor-acceptor copolymers in the future.

Page generated in 0.0213 seconds