1 |
Optimisation du Handover dans le protocole IPv6 mobile avec la méthode E-HCF / Optimization of mobile IPv6 Handover performance using E-HCF methodWei, Guozhi 15 February 2008 (has links)
Les réseaux sans fil sont en plein développement du fait de la flexibilité de leur interface, qui permet aux utilisateurs de se communiquer directement entre eux ou de se connecter facilement à Internet en onde radio sans mettre en place préalablement d'infrastructures lourdes, telles que des câbles filaires. Parmi les différentes technologies de réseaux sans fil, l'IEEE 802.11/Wi-Fi est devenu une technologie plus connue et plus utilisée pour construire des réseaux sans fil à haut débit dans une zone à forte concentration d'utilisateurs, telle que les aéroports, les campus ou les sites industriels. L'engouement pour les réseaux sans fil et notamment pour les réseaux Wi-Fi a fait émerger de nouvelles nécessités, tel que se déplace dans les réseaux sans fil tout en restant connecté à Internet. Dans les réseaux sans fil, le déplacement d’un utilisateur implique parfois un changement de Point d’accès (AP) au réseau. On désigne généralement ce fait un handover de niveau 2, du fait que le changement d'AP n’implique que les deux premières couches du modèle OSI. Si les deux APs se situent dans des réseaux différents, le changement d'AP implique aussi le changement de réseau pour cet utilisateur. On dénomme généralement cette situation un handover de niveau 3, par le fait que cet utilisateur devrait changer son réseau d’attachement et son adresse IP pour maintenir la connexion à Internet et que ce changement intervient sur la couche réseau du model OSI. La procédure du handover de niveau 2 dans les réseaux Wi-Fi est gérée par la norme IEEE 802.11 et celle de niveau 3 est gérée par le protocole IP Mobile. Le protocole IP Mobile est un protocole standardisé par l'IETF qui permet à l'utilisateur de maintenir ses communications en cours et de rester connecté à Internet tout en masquant d'une manière transparente le changement de réseau. Ainsi, l'utilisateur peut se déplace dans les réseaux Wi-Fi tout en maintenant les communications en cours et restant connecté à Internet grâce à la norme IEEE 802.11 et au protocole IP Mobile. Cependant, le délai introduit par ces deux procédures du handover est trop long, les communications en cours sont interrompus pendant ces procédures, naturellement, cela ne peut pas répondre aux exigences qualitatives des applications temps réel comme la vidéo conférence ou la voix sur IP. Diverses propositions qui ont été faites pour réduire le délai de ces procédures du handover et améliorer leur performance. Cependant, ces propositions sont soit imparfaites, soit non-implémentables à cause de leur complexité. En partant du principe que les réseaux Wi-Fi et les routeurs d'accès sont déjà massivement implantés dans le monde universitaire et dans les entreprises, nous proposons d'ajouter une nouvelle fonctionnalité, appelé E-HCF (Extended Handover Control Function) dans un routeur sans modifier les autres équipements du réseau. Le routeur pourvu de cette fonctionnalité est dénommé le routeur E-HCF. Pour réduire le délai des procédures du handover, la fonctionnalité E-HCF permet au routeur de générer une topologie des APs en utilisant la théorie des graphes de voisinage et de maintenir un pool d'adresses IP disponibles dans sa base de données. Quand le Nœud mobile (MN) a besoin de changer son AP, le routeur E-HCF peut proposer au MN une liste des APs potentiellement utilisables qui sont choisis et classés par un algorithme de sélection et de classement que nous avons élaboré dans la thèse. Si le changement d'AP implique un changement de réseau, le MN doit changer d'adresse IP. Dans ce cas, le routeur E-HCF peut attribuer une adresse IP unique à ce MN. Le MN peut donc utiliser cette adresse sans exécuter la phase d'Auto-configuration d'adresses ni exécuter la procédure de Détection d'adresse dupliquée. Avec cette nouvelle fonctionnalité E-HCF, nous pouvons réduire le délai des procédures du handover de quelques secondes à une centaine de millisecondes. / Wireless networks are in full development because of the flexibility of their interfaces, which allow users to be easily connected to the Internet. Among various technologies of wireless networks, IEEE 802.11/Wi-Fi technology is becoming better known and more used to construct high speed wireless networks in areas with high concentration of users, such as airports, campuses or industrial sites. The passion for wireless networks and in particular for Wi-Fi networks has given rise to new uses of the Internet, such as moving in wireless networks while still being connected. In Wi-Fi networks, the user's movement may sometimes lead to a change of Access Points (APs) to the network. This fact is generally named the handover of layer 2 because this change involves only the first two layers of the OSI model. If the two APs are located in different networks, the change of AP would entail a change of network for the user. This situation is generally termed, the handover of layer 3 because the user should change his network and his IP address to maintain connection to the Internet. Therefore, this change intervenes on the network layer of the OSI model. The process of the handover of layer 2 is handled by the IEEE 802.11 standard and that of layer 3 is controlled by the Mobile IP protocol. The Mobile IP protocol is a protocol standardized by IETF, which allows users to change network, while maintaining their actual connection to the Internet. Consequently, users can connect to the Internet, while keep moving in Wi-Fi networks in control of the IEEE 802.11 standard and the Mobile IP protocol. However, the delay induced by these procedures of handover is too long. As such, this generally leads to the cut-off of current communications, hence impacting adversely on the qualitative requirements of real-time applications, such as video conferencing or voice over IP. Various proposals have been made to reduce the delay of handover procedures and to improve their performances. However, these proposals are either imperfect, or non-implementable because of their complexity. Based on the premise that Wi-Fi networks and access routers are already massively implanted in academia and in industry, we propose to add a new functionality, called E-HCF (Extended Handover Control Function) in routers, without modifying other network equipments. A router equipped with this functionality is called an E-HCF router. To reduce the delay of handover procedures, the E-HCF functionality allows a router to generate a topology of APs by using the neighbourhood graph theory and to maintain a pool of available IP addresses in its database. When a Mobile Node (MN) needs to change its AP, the E-HCF router may propose to the latter a list of potentially usable APs, which are selected and classified by an algorithm of selection and classification that we developed in the thesis. If the change of APs involves a change of network, the MN must change its IP address. In this case, the E-HCF router can assign a unique IP address to this MN. The MN can thus use this address without engaging in the process of Stateless Address Autoconfiguration or the procedure of Duplicate Address Detection. With this new E-HCF functionality, we can reduce the delay of handover procedures from a few seconds to one hundred milliseconds.
|
2 |
Optimisation du Handover dans le protocole IPv6 mobile avec la méthode E-HCFWei, Guozhi 15 February 2008 (has links) (PDF)
Les réseaux sans fil sont en plein développement du fait de la flexibilité de leur interface, qui permet aux utilisateurs de se communiquer directement entre eux ou de se connecter facilement à Internet en onde radio sans mettre en place préalablement d'infrastructures lourdes, telles que des câbles filaires. Parmi les différentes technologies de réseaux sans fil, l'IEEE 802.11/Wi-Fi est devenu une technologie plus connue et plus utilisée pour construire des réseaux sans fil à haut débit dans une zone à forte concentration d'utilisateurs, telle que les aéroports, les campus ou les sites industriels. L'engouement pour les réseaux sans fil et notamment pour les réseaux Wi-Fi a fait émerger de nouvelles nécessités, tel que se déplace dans les réseaux sans fil tout en restant connecté à Internet. Dans les réseaux sans fil, le déplacement d'un utilisateur implique parfois un changement de Point d'accès (AP) au réseau. On désigne généralement ce fait un handover de niveau 2, du fait que le changement d'AP n'implique que les deux premières couches du modèle OSI. Si les deux APs se situent dans des réseaux différents, le changement d'AP implique aussi le changement de réseau pour cet utilisateur. On dénomme généralement cette situation un handover de niveau 3, par le fait que cet utilisateur devrait changer son réseau d'attachement et son adresse IP pour maintenir la connexion à Internet et que ce changement intervient sur la couche réseau du model OSI. La procédure du handover de niveau 2 dans les réseaux Wi-Fi est gérée par la norme IEEE 802.11 et celle de niveau 3 est gérée par le protocole IP Mobile. Le protocole IP Mobile est un protocole standardisé par l'IETF qui permet à l'utilisateur de maintenir ses communications en cours et de rester connecté à Internet tout en masquant d'une manière transparente le changement de réseau. Ainsi, l'utilisateur peut se déplace dans les réseaux Wi-Fi tout en maintenant les communications en cours et restant connecté à Internet grâce à la norme IEEE 802.11 et au protocole IP Mobile. Cependant, le délai introduit par ces deux procédures du handover est trop long, les communications en cours sont interrompus pendant ces procédures, naturellement, cela ne peut pas répondre aux exigences qualitatives des applications temps réel comme la vidéo conférence ou la voix sur IP. Diverses propositions qui ont été faites pour réduire le délai de ces procédures du handover et améliorer leur performance. Cependant, ces propositions sont soit imparfaites, soit non-implémentables à cause de leur complexité. En partant du principe que les réseaux Wi-Fi et les routeurs d'accès sont déjà massivement implantés dans le monde universitaire et dans les entreprises, nous proposons d'ajouter une nouvelle fonctionnalité, appelé E-HCF (Extended Handover Control Function) dans un routeur sans modifier les autres équipements du réseau. Le routeur pourvu de cette fonctionnalité est dénommé le routeur E-HCF. Pour réduire le délai des procédures du handover, la fonctionnalité E-HCF permet au routeur de générer une topologie des APs en utilisant la théorie des graphes de voisinage et de maintenir un pool d'adresses IP disponibles dans sa base de données. Quand le Nœud mobile (MN) a besoin de changer son AP, le routeur E-HCF peut proposer au MN une liste des APs potentiellement utilisables qui sont choisis et classés par un algorithme de sélection et de classement que nous avons élaboré dans la thèse. Si le changement d'AP implique un changement de réseau, le MN doit changer d'adresse IP. Dans ce cas, le routeur E-HCF peut attribuer une adresse IP unique à ce MN. Le MN peut donc utiliser cette adresse sans exécuter la phase d'Auto-configuration d'adresses ni exécuter la procédure de Détection d'adresse dupliquée. Avec cette nouvelle fonctionnalité E-HCF, nous pouvons réduire le délai des procédures du handover de quelques secondes à une centaine de millisecondes. Pour réduire la perte de paquets due aux procédures du handover, nous proposons de modifier le protocole IPv6 Mobile. Le MN met fin à l'association entre son adresse mère et son adresse temporaire avec l'Agent mère (HA) et le Nœud correspondant (CN) avant de procéder la procédure du handover. Par ce moyen, le HA peut intercepter les paquets destinés à l'adresse mère du MN et les garder dans son mémoire tampon. Une fois le MN met à jour l'association entre son adresse mère et sa nouvelle adresse temporaire avec le HA, le HA peut envoyer les paquets stockés dans son mémoire de tampon au MN. Il intercepte et redirige également les paquets du CN ou du MN vers la nouvelle adresse temporaire du MN ou vers les adresses du CN respectivement pendant la phase de mise à jour d'association. Avec cette méthode, nous pouvons limiter la perte de paquets et garantir un délai acceptable. Pour étayer notre proposition, nous avons utilisé le simulateur OPNET pour simuler le déroulement des procédures du handover dans les réseaux Wi-Fi géré par la méthode E-HCF et celui géré par le protocole IPv6 Mobile. Les résultats obtenus montrent qu'avec notre méthode E-HCF, nous pouvons garantir un délai acceptable et limiter la perte des paquets. Ensuite, nous avons également validé notre méthode E-HCF avec la norme IEEE 802.11e qui supporte la Qualité de Service (QoS). Avec le support de QoS, les résultats obtenus par simulation illustrent les améliorations des performances significatives pour les communications de bout en bout dans les réseaux chargés. Nos travaux de recherche ont donné lieu à trois publications dans les conférences internationales et un article dans la revue internationale (Voir Index)
|
Page generated in 0.3075 seconds