• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de la signalisation et des rôles fonctionnels des hedgehogs dans la morphogenèse gastrointestinale

Turgeon, Sabrina January 2009 (has links)
Les Hedgehogs (Hh) sont des morphogènes multifonctionnels qui ont des rôles importants dans l'embryogenèse et la morphogenèse de plusieurs organes. Leur rôle dans le développement de la glande gastrique humaine n'est pas connu. Peu est connu de la signalisation Hh, plus précisément de Sonic Hedgehog (Shh), dans la glande gastrique humaine adulte, autant dans sa localisation et son association aux différents types cellulaires gastriques que dans son rôle fonctionnel dans cet organe.Les modèles murins de délétion classique des molécules de la signalisation Hh subissent, dans la grande majorité, une mort néonatale ou au stade somites rendant ces modèles inutiles pour l'étude du maintien de l'homéostasie du tube digestif adulte, autant au niveau de l'intestin que de l'estomac. Dans un premier temps, les patrons d'expression des différents gènes clés impliqués dans la voie de signalisation Hh dans le développement foetal humain de la glande gastrique ont été déterminés à l'aide de tissus gastriques foetaux âgés entre 14 et 20 semaines de gestation. Dans un deuxième temps, les rôles fonctionnels et physiologiques de Shh, dans l'homéostasie de l'intestin adulte et dans la morphogenèse et homéostasie de l'estomac ont été élucidés par la génération de souris possédant une délétion conditionnelle de Shh à l'épithélium de l'intestin ou de l'estomac à l'aide du système Cre/loxP. L'analyse des patrons d'expression des ligands SHH et Indian Hedgehog (IHH), des récepteurs PATCHED et SMOOTENED, des effecteurs GLI et de gènes cibles de la voie de signalisation Hh dans la glande gastrique humaine en développement, a confirmé la présence de la majorité de ces protéines dès 14 semaines de gestation. Ces effecteurs n'ont été détectés qu'au niveau des cellules à mucus de surface, des cellules du foveolae et des cellules zymogéniques mais pas au niveau des cellules pariétales. L'expression strictement épithéliale de presque toutes ces protéines suggère fortement l'activation exclusivement autocrine de cette voie de signalisation dans la glande gastrique humaine foetale. Ces patrons d'expression diffèrent de ceux retrouvés dans la glande gastrique murine foetale ou adulte. L'étude du modèle murin Villine -Cre; ShhloxP/loxP , qui possède une délétion de Shh à l'épithélium intestinal, a permis d'élucider les rôles fonctionnels de Shh dans l'homéostasie de l'intestin. Nous avons constaté que Shh a un rôle spécifique dans l'homéostasie intestinale puisque les souris expérimentales présentent un allongement villositaire. Shh est également impliqué dans la maturation des cellules caliciformes et dans l'inhibition de la prolifération épithéliale intestinale.Les résultats montrent aussi que Ihh semble, quant à lui, avoir un rôle compensateur puisqu'il se relocalise dans les régions qui expriment normalement Shh. L'étude du modèle murin Foxa3 -Cre; ShhloxP/loxP , qui possède une délétion de Shh dans l'épithélium gastrique, a permis d'élucider les rôles de Shh dans le développement et le maintien de la glande gastrique. Nous avons déterminé que Shh a un rôle dans la morphogenèse de la glande gastrique et dans le maintien de ce dernier. En effet, l'architecture foveolae-glande est fortement affectée par la perte épithéliale de Shh.Les résultats démontrent également que Shh a un rôle déterminant dans la différenciation des cellules pariétales puisque ces dernières sont absentes chez les souris expérimentales.
2

Charakterisierung molekularer und pathogenetischer Mechanismen einer isolierten Brachydaktylie Typ E auf der Grundlage der balancierten Translokation t(8;12)(q13;p11.2)

Maaß, Philipp Georg 28 September 2009 (has links)
In dieser Dissertation wurde eine isolierte Brachydaktylie vom Typ E (BDE) untersucht. Grundlage war eine Familie mit autosomal-dominanten Erbgang BDE. Der genetische Hintergrund ist eine balancierte Translokation t(8;12)(q13;p11.2). Der Bruchpunkt auf derivativem Chromosom der(8) liegt 86 kb strangaufwärts des chondrogenetisch essentiellen Kandidatengens PTHLH (Parathyroid hormone like hormone). PTHLH ist für die Differenzierungsrate von proliferativen Chondrozyten verantwortlich. Positiv oder negativ reguliertes Pthlh führen zu einer Dysbalance mit Brachydaktylie-ähnlichen Phänotypen in murinen Tiermodellen. Der Leserahmen des Kaliumkanals KCNB2 auf Chromosom 8 wurde durch die Translokation in Intron 2 getrennt. Chrondrogenetische KCNB2 Funktionen konnten durch in situ Hybridisierungen ausgeschlossen werden. Der Translokationsbruchpunkt auf der(8) liegt in einer in Mammalia hochkonservierten Region und beeinhaltet ein Bindungsmotiv für AP1 Transkriptionsfaktoren. Durch die Translokation befindet sich in unmittelbarer Nähe eine Kernkonsensussequenz für ETS Transkriptionsfaktoren. AP1 und ETS Transkriptionsfaktoren interagieren und wurden auf eine potentielle PTHLH Regulation untersucht. Epigenetische Histonmodifizierungen, charakteristisch für cis-regulatorische Elemente, sowie Reportergenassays mit AP1 und ETS1 Bindungsmotiven zeigten einen Bezug zur PTHLH Regulation. Bindungsassays mit AP1 und ETS1 Transkriptionsfaktoren an den Bruchpunktsequenzen, sowie funktionelle in vitro Experimente mit Chondrozyten verifizierten die Hypothese, dass der Translokationsbruchpunkt strangaufwärts von PTHLH regulatorische Eigenschaften besitzt. Die AP1 und ETS1 Transkriptionsfaktoren regulierten PTHLH positiv in ATDC5 und C28/I2 Chondrozyten. In chondrogeninduzierten Patientenfibroblasten war die PTHLH Expression inhibiert. Die molekulare Pathogenese der BDE wurde durch die bisher unbekannte chondrogene PTHLH Fehlregulation dargestellt. / We studied a 3-generation family with Brachydactyly Type E (BDE) and identified a t(8;12)(q13;p11.2) translocation. We identified PTHLH (Parathyroid hormone like hormone) on chromosome 12p11.2 and the ionchannel KCNB2 on chromosome 8q13 as candidate genes. KCNB2 was disrupted in intron 2, while the chromosome 12 breakpoint is localized 86 kb upstream of PTHLH; only the latter gene is involved in chondrogenesis. The 12p11.2 breakpoint is conserved and features an AP1 binding site 86 kb upstream of PTHLH. Due to the translocation, an ETS binding site from 8q13 resided near the AP1 site. Since both transcription factors interact, we tested if AP1 and ETS1 can activate PTHLH in ATDC5 and C28/I2 chondrocytes. We used the breakpoint sequences of the derivative chromosomes 8 and 12 and the nonaffected chromosome 8 and 12 allele sequences in reporter-gene assays. Reporter-gene constructs containing the der(8) breakpoint revealed activation in murine and human chondrocytes. The enrichment of histone modifications, implicating cis-regulatory effects were investigated in the breakpoint area. We found the enriched histone H3K4me1 modification at the chromosome 12 breakpoint position in murine and human chondrocytes, while affected fibroblasts showed higher H3K4me1 enrichment at the der(8) breakpoint compared to wt(12) allele. Furthermore, the breakpoint sequence bound to AP1 and C-ets-1 in EMSA. Western blotting after PMA-stimulated AP1 and ETS1 activation and overexpression of different AP1 and ETS1 combinations showed activated PTHrP expression in chondrocytes. In chondrogenic induced BDE fibroblasts PTHLH was inhibited, while IHH was upregulated. We suggest that PTHLH was dysregulated by the translocation in BDE chondrocytes. This could lead to BDE. We highlight the impact to characterize genomic breakpoints in detail and demonstrate a novel AP1- and ETS1-directed chondrogenic PTHLH regulation in wild-type chondrocytes and dysregulation in the pathogenesis of BDE.
3

Clinical and genetic studies of three inherited skeletal disorders

Stattin, Eva-Lena January 2009 (has links)
Mutations in genes of importance for cartilage development may lead to skeletal malformations, chondroskeletal dysfunction and increased susceptibility to degenerative joint disease. Characterization of these mutations and identification of molecular pathways for the corresponding gene products have contributed to our understanding of mechanisms regulating skeletal patterning, endochondral ossification and joint formation. A five generation family segregating autosomal dominant osteochondritis dissecans (OCD) was identified. Affected family members presented with OCD in knees, hips and elbows, short stature, and early osteoarthritis. A genome wide scan and a multipoint linkage analysis identified aggrecan (ACAN) as a prime candidate gene. DNA sequence analysis of the ACAN-gene revealed heterozygosity for a missense mutation (c.6907G>A) in affected subjects, resulting in a p.V2303M substitution in the aggrecan G3 domain C-type lectin. This domain is important for the interaction with other proteins in the cartilage extracellular matrix. To determine the effect of the V2303M substitution on secretion and interaction, we performed binding studies with recombinant mutated and wild type G3 proteins. We found decreased affinity or complete loss of interaction between V2303M aggrecan and fibulin1, fibulin2 and tenascin-R. Analysis of articular cartilage from an affected family member confirmed that V2303M aggrecan is produced and present. In search for gene mutations associated with multiple epiphyseal dysplasia (MED) we considered the ACAN-gene a likely candidate. The ACAN-gene was analysed in 39 individuals with MED and screened negative for mutations in six previously known MED genes. Sequence analysis revealed a heterozygous missense mutation (c.1448G>T) in one adult male and compound heterozygous missense mutations (c.1366T>C and c.836G>A) in a five year old boy with healthy parents, each of them carrier for one of the mutations. A large family segregating autosomal dominant brachymesophalangia and OCD in finger joints was characterised. The clinical presentation in six affected family members was consistent with the diagnosis Brachydactyly type A1, in this family characterized by shortening of the middle phalanges, short ulnar styloid process, flattening of the metacarpal heads and mild osteoarthritis. The condition may be caused by mutations in the Indian hedgehog gene (IHH) or a yet unidentified gene on chromosome 5p13. Sequence analysis of the IHH-gene in affected individuals revealed a novel C to T transition (c.472C>T) leading to a p.158Arg>Cys substitution. Residue 158 in IHH is highly conserved throughout evolution and molecular structure modelling of IHH suggests that the R158C substitution leads to a conformational change at the site of interaction with the IHH-receptor. This supports that the substitution causes Brachydactyly type A1 in this family. In summary, we report on the clinical, radiological and molecular genetic characteristics of the three skeletal disorders OCD, MED and BDA1. Our results provide a novel molecular mechanism in the pathophysiology of familial osteochondritis dissecans confirming the importance of aggrecan C-type lectin for cartilage function. We also show that ACAN-gene mutations may be associated with MED extending the spectrum of skeletal dysplasias associated with the aggrecan gene. Finally, we report on a novel missense mutation in a conserved region of the IHH-gene associated with BDA1.
4

Expression and Functional Analysis of pthrp1 and ihha in the Regeneration of Bones in Zebrafish Caudal Fin

Al-Rewashdy, Ali 18 September 2013 (has links)
The parathyroid hormone related protein (PTHrP) and Indian Hedgehog (IHH) are two secreted molecules, acting as paracrine factors during embryonic development and post-natal growth of endochondral bones. PTHrP and IHH are essential factors for the regulation of chondrocyte proliferation and differentiation. However, it has previously been shown that PTHrP and IHH are also expressed in the chick and mouse embryos intramembranous bones, which do not form through a cartilage intermediate and in which chondrocytes are absent. Similarly, the zebrafish orthologs, pthrp1 and ihha, are also expressed during the regeneration of the intramembranous bones of the fin rays of the zebrafish caudal fin. This surprising observation led us to further analyze the expression and function of pthrp1 and ihha in the regenerating fin rays. Gene expression analysis using in situ hybridization shows that pthrp1 is expressed in a stripe of cells located within the domain of expression of ihha in the newly differentiating osteoblasts in the regenerating fin rays. Also, pthrp1 expression is observed at the level of the joints between the bone segments forming the rays and co-localizes with the expression domain of evx1, a transcription factor that has been implicated in the formation of joints in the caudal fin. Furthermore, RT-PCR analyses show that pthrp2 and the pthrp receptors mRNA (pth1r, pth2r and pth3r) are also present in the fin regenerate. Finally, functional analysis shows that the knockdown of pthrp1 or ihha expression by electroporation of morpholinos induces a delay of the regenerative outgrowth of the fin. These results suggest that pthrp1 and ihha may be involved in the regulation of proliferation and differentiation of chondrocyte-like osteoblasts in the fin rays, playing a role similar to that described in the mammalian growth plate of endochondral bones. In addition, pthrp1 is possibly an important factor involved in the formation and maintenance of joints of the dermal bones of the fin rays.
5

The Genetic Heterogeneity of Brachydactyly Type A1: Identifying the Molecular Pathways

Racacho, Lemuel Jean January 2015 (has links)
Brachydactyly type A1 (BDA1) is a rare autosomal dominant trait characterized by the shortening of the middle phalanges of digits 2-5 and of the proximal phalange of digit 1 in both hands and feet. Many of the brachymesophalangies including BDA1 have been associated with genetic perturbations along the BMP-SMAD signaling pathway. The goal of this thesis is to identify the molecular pathways that are associated with the BDA1 phenotype through the genetic assessment of BDA1-affected families. We identified four missense mutations that are clustered with other reported BDA1 mutations in the central region of the N-terminal signaling peptide of IHH. We also identified a missense mutation in GDF5 cosegregating with a semi-dominant form of BDA1. In two families we reported two novel BDA1-associated sequence variants in BMPR1B, the gene which codes for the receptor of GDF5. In 2002, we reported a BDA1 trait linked to chromosome 5p13.3 in a Canadian kindred (BDA1B; MIM %607004) but we did not discover a BDA1-causal variant in any of the protein coding genes within the 2.8 Mb critical region. To provide a higher sensitivity of detection, we performed a targeted enrichment of the BDA1B locus followed by high-throughput sequencing. We report the identification of a novel 9.5 Kb intergenic tandem duplication in two unrelated BDA1-affected families. In-vitro and in-vivo reporter assays demonstrated the enhancer activity of noncoding conserved sequence elements found within the microduplication. We also show an upregulation of the neighboring genes, NPR3 and PDZD2, in the patients' fibroblasts that suggests a gain-of-function through the duplication of cis-regulatory elements on dose sensitive genes. By expanding the repertoire of BDA1-causing mutations in IHH, GDF5, BMPR1B and at the BDA1B locus, we have begun to elucidate a common genetic pathway underlying phalangeal formation and elongation.
6

Expression and Functional Analysis of pthrp1 and ihha in the Regeneration of Bones in Zebrafish Caudal Fin

Al-Rewashdy, Ali January 2013 (has links)
The parathyroid hormone related protein (PTHrP) and Indian Hedgehog (IHH) are two secreted molecules, acting as paracrine factors during embryonic development and post-natal growth of endochondral bones. PTHrP and IHH are essential factors for the regulation of chondrocyte proliferation and differentiation. However, it has previously been shown that PTHrP and IHH are also expressed in the chick and mouse embryos intramembranous bones, which do not form through a cartilage intermediate and in which chondrocytes are absent. Similarly, the zebrafish orthologs, pthrp1 and ihha, are also expressed during the regeneration of the intramembranous bones of the fin rays of the zebrafish caudal fin. This surprising observation led us to further analyze the expression and function of pthrp1 and ihha in the regenerating fin rays. Gene expression analysis using in situ hybridization shows that pthrp1 is expressed in a stripe of cells located within the domain of expression of ihha in the newly differentiating osteoblasts in the regenerating fin rays. Also, pthrp1 expression is observed at the level of the joints between the bone segments forming the rays and co-localizes with the expression domain of evx1, a transcription factor that has been implicated in the formation of joints in the caudal fin. Furthermore, RT-PCR analyses show that pthrp2 and the pthrp receptors mRNA (pth1r, pth2r and pth3r) are also present in the fin regenerate. Finally, functional analysis shows that the knockdown of pthrp1 or ihha expression by electroporation of morpholinos induces a delay of the regenerative outgrowth of the fin. These results suggest that pthrp1 and ihha may be involved in the regulation of proliferation and differentiation of chondrocyte-like osteoblasts in the fin rays, playing a role similar to that described in the mammalian growth plate of endochondral bones. In addition, pthrp1 is possibly an important factor involved in the formation and maintenance of joints of the dermal bones of the fin rays.

Page generated in 0.014 seconds