• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prédiction des séquences cis-regulatrices tissu-spécifiques: application à l'ascidie Ciona intestinalis et au neurectoderme antérieur

Häussler, Maximilian 15 July 2009 (has links) (PDF)
The detection and annotation of cis-regulatory sequences is a difficult problem. There is currently no generally applicable experimental procedure or computational algorithm to identify the non-coding regions of the genome that serve to activate gene expression in a given cell type. The only indicator of cis-regulatory function is the conservation of a sequence in other genomes. Regions can then be tested one-by-one in transgenic assays but this is time-consuming in vertebrates. Only a limited number of these already validated cis-regulatory sequences have been curated in biological databases. One of the main advantages of the model organism Ciona intestinalis is that cis-regulatory tests can be conducted very easily and the result is observable after one day while the animal follows the chordate body plan. However, a sequence found to be active in this organism can currently not be mapped to genomes of other animals.
2

Cis-regulatory Analysis Of The Pigment Cell Differentiation Gene Polyketide Synthase

Rogers, David 01 January 2008 (has links)
The analysis of Gene Regulatory Networks (GRNs) is essential to understanding the complete process of embryo development. Elucidating every gene regulatory circuit from maternal regulatory inputs all the way to the activation of differentiation gene batteries is an important step in increasing our understanding of developmental biology. In this work I study the cis-regulatory architecture of a pigment cell differentiation gene, polyketide synthase (SpPks) in the sea urchin Strongylocentrotus purpuratus. SpPks encodes an enzyme that is responsible for the biosynthesis of the sea urchin pigment echinochrome in larval pigment cells. The analysis of the promoter of a differentiation gene will lead to identifying the direct upstream regulators and ultimately to elucidating the structure of the upstream gene regulatory network, which is mostly uncharacterized. From previous studies the transcription factors SpGcm and SpGatae are predicted to be positive regulators of SpPks. Here, I identify a minimal 1kb promoter region containing putative DNA-binding sites for both GCM and GATAE that is able to recapitulate the expression of SpPks. I further show by mutagenesis that a putative DNA-binding site for GCM located 1,179 base pairs upstream of the start of transcription is a direct target for the positive cis-regulation of SpPks. Quantitative analysis of the transcriptional regulatory function of the GCM-mutagenized construct suggests that GCM is not necessary for the start of SpPks transcription but is required for its maintenance. Several GATA E binding sites have been identified within the minimal promoter for SpPks by means of consensus sequence. My analysis suggests that GATA E may be a direct positive regulator and could potentially be required for the onset of transcription of SpPks, though further experimentation will be necessary to characterize the exact regulatory function of GATA E.
3

Regional Contributions to Neuronal Diversity in the Developing Mouse Telencephalon

Qin, Shenyue 15 December 2017 (has links)
No description available.
4

Analysis Of Potential CIS Regulatory Elements In Prokaryotic And Eukaryotic Genomes

Raghavan, Sowmya 04 1900 (has links) (PDF)
No description available.
5

Evaluating <i>in silico</i> enhancer prediction for non-traditional model organisms through a cross species reporter assay

Tieke, Ellen Claire 19 April 2023 (has links)
No description available.
6

The Genetic Heterogeneity of Brachydactyly Type A1: Identifying the Molecular Pathways

Racacho, Lemuel Jean January 2015 (has links)
Brachydactyly type A1 (BDA1) is a rare autosomal dominant trait characterized by the shortening of the middle phalanges of digits 2-5 and of the proximal phalange of digit 1 in both hands and feet. Many of the brachymesophalangies including BDA1 have been associated with genetic perturbations along the BMP-SMAD signaling pathway. The goal of this thesis is to identify the molecular pathways that are associated with the BDA1 phenotype through the genetic assessment of BDA1-affected families. We identified four missense mutations that are clustered with other reported BDA1 mutations in the central region of the N-terminal signaling peptide of IHH. We also identified a missense mutation in GDF5 cosegregating with a semi-dominant form of BDA1. In two families we reported two novel BDA1-associated sequence variants in BMPR1B, the gene which codes for the receptor of GDF5. In 2002, we reported a BDA1 trait linked to chromosome 5p13.3 in a Canadian kindred (BDA1B; MIM %607004) but we did not discover a BDA1-causal variant in any of the protein coding genes within the 2.8 Mb critical region. To provide a higher sensitivity of detection, we performed a targeted enrichment of the BDA1B locus followed by high-throughput sequencing. We report the identification of a novel 9.5 Kb intergenic tandem duplication in two unrelated BDA1-affected families. In-vitro and in-vivo reporter assays demonstrated the enhancer activity of noncoding conserved sequence elements found within the microduplication. We also show an upregulation of the neighboring genes, NPR3 and PDZD2, in the patients' fibroblasts that suggests a gain-of-function through the duplication of cis-regulatory elements on dose sensitive genes. By expanding the repertoire of BDA1-causing mutations in IHH, GDF5, BMPR1B and at the BDA1B locus, we have begun to elucidate a common genetic pathway underlying phalangeal formation and elongation.
7

Role of Cis-regulatory Elements in Transcriptional Regulation: From Evolution to 4D Interactions

Vangala, Pranitha 14 April 2020 (has links)
Transcriptional regulation is the principal mechanism in establishing cell-type specific gene activity by exploring an almost infinite space of different combinations of regulatory elements, transcription factors with high precision. Recent efforts have mapped thousands of candidate regulatory elements, of which a great portion is cell-type specific yet it is still unclear as to what fraction of these elements is functional, what genes these elements regulate, or how they are established in a cell-type specific manner. In this dissertation, I will discuss methods and approaches I developed to better understand the role of regulatory elements and transcription factors in gene expression regulation. First, by comparing the transcriptome and chromatin landscape between mouse and human innate immune cells I showed specific gene expression programs are regulated by highly conserved regulatory elements that contain a set of constrained sequence motifs, which can successfully classify gene-induction in both species. Next, using chromatin interactions I accurately defined functional enhancers and their target genes. This fine mapping dramatically improved the prediction of transcriptional changes. Finally, we built a supervised learning approach to detect the short DNA sequences motifs that regulate the activation of regulatory elements following LPS stimulation. This approach detected several transcription factors to be critical in remodeling the epigenetic landscape both across time and individuals. Overall this thesis addresses several important aspects of cis-regulatory elements in transcriptional regulation and started to derive principles and models of gene-expression regulation that address the fundamental question: “How do cis-regulatory elements drive cell-type-specific transcription?”
8

Developing the Cis-Regulatory Association Model (CRAM) to Identify Combinations of Transcription Factors in ChIP-Seq Data

Kennedy, Brian Alexander 17 December 2010 (has links)
No description available.

Page generated in 0.1017 seconds