• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 2
  • Tagged with
  • 33
  • 33
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Device Applications of Epitaxial III-Nitride Semiconductors

Shetty, Arjun January 2015 (has links) (PDF)
Through the history of mankind, novel materials have played a key role in techno- logical progress. As we approach the limits of scaling it becomes difficult to squeeze out any more extensions to Moore’s law by just reducing device feature sizes. It is important to look for an alternate semiconductor to silicon in order to continue making the progress predicted by Moore’s law. Among the various semiconductor options being explored world-wide, the III-nitride semiconductor material system has certain unique characteristics that make it one of the leading contenders. We explore the III-nitride semiconductor material system for the unique advantages that it offers over the other alternatives available to us. This thesis studies the device applications of epitaxial III-nitride films and nanos- tructures grown using plasma assisted molecular beam epitaxy (PAMBE) The material characterisation of the PAMBE grown epitaxial III-nitrides was car- ried out using techniques like high resolution X-ray diffraction (HR-XRD), field emis- sion scanning electron microscopy (FESEM), room temperature photoluminescence (PL) and transmission electron microscopy (TEM). The epitaxial III-nitrides were then further processed to fabricate devices like Schottky diodes, photodetectors and surface acoustic wave (SAW) devices. The electrical charcterisation of the fabricated devices was carried out using techniques like Hall measurement, IV and CV measure- ments on a DC probe station and S-parameter measurements on a vector network analyser connected to an RF probe station. We begin our work on Schottky diodes by explaining the motivation for adding an interfacial layer in a metal-semiconductor Schottky contact and how high-k di- electrics like HfO2 have been relatively unexplored in this application. We report the work carried out on the Pt/n-GaN metal-semiconductor (MS) Schottky and the Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diode. We report an improvement in the diode parameters like barrier height (0.52 eV to 0.63 eV), ideality factor (2.1 to 1.3) and rectification ratio (35.9 to 98.9 @2V bias) after the introduction of 5 nm of HfO2 as the interfacial layer. Temperature dependent I-V measurements were done to gain a further understanding of the interface. We observe that the barrier height and ideality factor exhibit a temperature dependence. This was attributed to inhomogeneities at the interface and by assuming a Gaussian distribution of barrier heights. UV and IR photodetectors using III-nitrides are then studied. Our work on UV photodetectors describes the growth of epitaxial GaN films. Au nanoparticles were fabricated on these films using thermal evaporation and annealing. Al nanostruc- tures were fabricated using nanosphere lithography. Plasmonic enhancement using these metallic nanostructures was explored by fabricating metal-semiconductor-metal (MSM) photodetectors. We observed plasmonic enhancement of photocurrent in both cases. To obtain greater improvement, we etched down on the GaN film using reac tive ion etching (RIE). This resulted in further increase in photocurrent along with a reduction in dark current which was attributed to creation of new trap states. IR photodetectors studied in this thesis are InN quantum dots whose density can be controlled by varying the indium flux during growth. We observe that increase in InN quantum dot density results in increase in photocurrent and decrease in dark current in the fabricated IR photodetectors. We then explore the advantages that InGaN offers as a material that supports surface acoustic waves and fabricate InGaN based surface acoustic wave devices. We describe the growth of epitaxial In0.23 Ga0.77 N films on GaN template using molecular beam epitaxy. Material characterisation was carried out using HR-XRD, FESEM, PL and TEM. The composition was determined from HR-XRD and PL measurements and both results matched each other. This was followed by the fabrication of interdigited electrodes with finger spacing of 10 µm. S-parameter results showed a transmission peak at 104 MHz with an insertion loss of 19 dB. To the best of our knowledge, this is the first demonstration of an InGaN based SAW device. In summary, this thesis demonstrates the practical advantages of epitaxially grown film and nanostructured III-nitride materials such as GaN, InN and InGaN using plasma assisted molecular beam epitaxy for Schottky diodes, UV and IR photodetec- tors and surface acoustic wave devices.
32

The atomic struture of inversion domains and grain boundaries in wurtzite semonconductors : an investigation by atomistic modelling and high resolution transmission electron microscopy / Structure atomique des domaines d’inversion et joints de grains dans les semiconducteurs wurtzite : modélisation atomistique et microscopie électronique en transmission haute résolution

Li, Siqian 04 December 2018 (has links)
Au cours de ce travail, nous avons étudié deux types de défauts interfaciaux: domaines d’inversion (DI) et joints de grains (JG) dans des semiconducteurs de structure wurtzite (nitrures- d’éléments III, ZnO et l’hétérostructure ZnO/GaN) en utilisant le MET haute résolution et la modélisation ab initio. Dans le cas des DI, nos analyses théoriques montrent qu'une configuration tête-à-tête avec une séquence d'empilement à l’interface AaBbAa-AcCaA (H4) est la structure la plus stable dans les composés binaires (nitrures et ZnO wurtzites). De plus, un gaz d’électrons (2DEG) ou de trous (2DHG) à 2 dimensions est formé pour les configurations « tête-à-tête » ou queue-à-queue. A l’interface ZnO/GaN, l'observation de MET très haute résolution a confirmé la configuration H4 avec une interface -Zn-O-Ga-N. Notre modélisation théorique a mis en évidence la formation d’un gas de trous à 2 dimensions à cette hétérointerface. Nous avons aussi réalisé l’étude topologique, théorique et par MET des joints de grains de rotation autour de l’axe [0001] dans ces matériaux. Dans le GaN, nous avons trouvé que les plans du joint sont simplement formés par des dislocations de type a déjà connues pour le matériau en couche mince. Par contre, dans ZnO, la théorie topologique est complétement démontrée, et la dislocation [101 ̅0] est une brique de base dans la constitution des joints de grains avec des cycles d’atomes 6-8-4-. / In this work, we investigated two kinds of interfacial defects: inversion domain boundaries (IDBs) and grain boundaries (GB) in wurtzite semiconductors (III-nitrides, ZnO and ZnO/GaN heterostructure) using high-resolution TEM and first-principle calculations. For IDBs, theoretical calculation indicated that a head-to-head IDB with an interfacial stacking sequence of AaBbAa-AcCaA (H4) is the most stable structure in wurtzite compounds. Moreover, 2-dimensional electron gas (2DEG) and 2-dimensional hole gas (2DHG) build up in head-to-head and tail-to-tail IDBs, respectively. Considering the IDB at the ZnO/GaN heterointerface, TEM observations unveiled the H4 configuration with a -Zn-O-Ga-N interface. Moreover the theoretical investigation also confirmed stability of this interface along with the corresponding formation of a 2DHG. A detailed topological, TEM and theoretical investigation of [0001] tilt Grain Boundaries (GBs) in wurtzite symmetry has also been carried out. In GaN, it is shown that the GBs are only made of separated a edge dislocations with 4, 5/7 and 8 atoms rings. For ZnO, a new structural unit: the [101 ̅0] edge dislocation made of connected 6-8-4-atom rings is reported for the first time, in agreement with an early theoretical report on dislocations and jogs in the wurtzite symmetry.
33

Optical polarization and charge carrier density in semipolar and nonpolar InGaN quantum wells in core-shell microrods and planar LEDs

Mounir, Christian 15 July 2021 (has links)
InGaN-based light emitters are strongly affected by the inhomogeneous broadening induced by random alloy fluctuations. While these effects have been extensively investigated on c-plane (e.g. localization of carriers at low carrier density due to potential fluctuations, delocalization at higher carrier density), much fewer work report on the impact of inhomogeneous broadening on the emission properties of semipolar and nonpolar InGaN quantum wells (QWs). In addition to have a higher electron- and hole-wavefunction overlap and thereby an increased radiative recombination rate thanks to the reduced/suppressed built-in electric field due to polarization discontinuities at heterointerfaces, QWs grown along semipolar/nonpolar crystal orientations have the interesting property to emit polarized light. The characterization and theoretical understanding of their optical polarization properties is the first main focus of this thesis. A correlation between spectral width and degree of linear polarization (DLP) is highlighted through extensive temperature- and excitation-dependent polarization-resolved confocal micro-photoluminescence spectroscopy carried out on planar semi-polar/nonpolar QWs and on the m-plane side facet of core-shell microrods. A theoretical model based on electronic band structure calculated by the kp-envelope function method is developed to explain this correlation by taking inhomogeneous broadening into account. Considering indium content fluctuations and the localization lengths of electrons and holes, different effective broadenings are applied to groups of subbands. It is shown that for high-inclination semipolar and nonpolar InGaN/GaN QWs inhomogeneous broadening leads to a significant increase of the DLP at room temperature. Furthermore, the DLP-drop towards high carrier density due to the transition from the Boltzmann- to the Fermi-regime is smoother and starts at lower carrier density. The model is also used to study the peculiar polarization properties of (202¯1) InGaN/GaN QWs compared to (202¯1¯) QWs: although they have equivalent band structures in the framework of k·p-theory and are therefore expected to have identical optical polarization properties, (202¯1) QWs consistently exhibit a lower DLP than (202¯1¯) QWs. This discrepancy might be related to different effective broadenings of their valence subbands induced by the rougher upper QW interface in (202¯1), by the larger sensitivity of holes to this upper interface due to the polarization field in (202¯1), and/or by the different degrees of localization of holes. Besides being strongly affected by inhomogeneous broadening, InGaN-based LEDs suffer from efficiency droop: their efficiency maximum is already reached at relatively low current density and then significantly drops towards their typical operation conditions. One way to mitigate its effect is to reduce the carrier density inside the active region, which can be achieved via several approaches, e.g. growing the active region on a 3D template, on a semipolar/nonpolar substrate or a relaxed InGaN template. The last two approaches reduce/suppress the built-in polarization field leading to wavefunctions with larger overlap and spread across the active region. In order to check and validate these approaches, a way to measure the carrier density inside the active region is necessary. This complex task, which is the second focus of this work, requires fitting a model of the carrier recombination dynamics to experimental data. Several methods are already available, which are mostly based on the basic ABC-model. The validity of this model is discussed through measurement of efficiency curves on various samples and extended to take into account the background carrier density at low carrier density and band-filling at high carrier density. The DLP drop towards high carrier density is fitted simultaneously with the efficiency curve to improve the robustness of the extraction of recombination coefficients. Nevertheless, without insights from time-resolved experimental data, extracting all recombination coefficients is shown to be very critical leading to ambiguous fitting results. Time-resolved measurements being complex and time-consuming, a new method based on an extended ABC-model and room-temperature bias-dependent photoluminescence spectroscopy is proposed. When investigating semipolar/nonpolar LEDs, this method allows to extract the carrier density within the active region without having to carry out time-resolved measurements, which is demonstrated using polarization-resolved efficiency curves measured on a m-plane LED. Growing the active region on 3D templates to reduce the local carrier density requires eventually experimental techniques with high spatial resolution for its characterization. This work reports the experimental know-how acquired through extensive characterization of single InGaN/GaN core-shell microrods. A thorough description of the confocal microscope and its alignment is given to achieve reproducible and diffraction limited spatial resolution polarization-resolved photoluminescence measurements, which allowed the first local internal quantum efficiency measurement along the side facet of InGaN/GaN core-shell microrods. / InGaN-basierte Lichtquellen sind stark von inhomogener Verbreiterung, die aus zufälligen Legierungsfluktuationen entsteht, beeinflusst. Während diese Effekte ausführlich auf die c-Ebene untersucht wurden (z.B. Ladungsträgerlokalisierung bei niedriger Ladungsträgerdichte auf Grund von Potentialfluktuationen, Delokalisierung bei höherer Ladungsträgerdichte), untersuchen wenige Studien den Einfluss von inhomogener Verbreiterung auf die Emissionseigenschaften von semipolarer und nonpolarer InGaN Quantentrögen. Quantentröge, die entlang semipolaren/nonpolaren Kristallrichtungen gewachsen sind, haben einen höheren Überlapp der Elektron- und Löcherwellenfunktionen und dadurch eine höhere strahlende Rekombinationsrate dank des niedrigen / unterdrückten elektrischen Feldes, das durch Polarizationsdiskontinuitäten an Heteroübergängen entsteht. Diese Quantentröge haben die interessante Eigenschaft, polariziertes Licht auszustrahlen. Die Charakterizierung und das theoretische Verständnis von diesen Polarizationseigenschaften ist der erste Schwerpunkt dieser Dissertation. Umfangreiche temperatur- und anregungsabhängige polarizationsaufgelöste konfokale Mikro-Photolumineszenz Spektroskopie auf planaren semipolaren/nonpolaren Quantentröge und auf die m-Ebene Seitenfacette von Core-Shell Mikrosäulen deuten auf eine Korrelation zwischen der spektralen Breite und dem optischen Polarizationsgrad. Basirend auf elektronischen Bandstrukturen, die mittels der k·p Hüllfunktionsmethode berechnet werden, wird ein theoretisches Modell entwickelt, um diese Korrelation unter Berücksichtigung der inhomogenen Verbreiterung zu erklären. In Anbetracht der Fluktuationen des Indiumgehalts und der Lokalisierungslängen von Elektronen und Löchern, werden unterschiedliche effektive Verbreiterungen auf Gruppen von Subbändern angewendet. Dadurch wird gezeigt, dass bei Raumtemperatur inhomogene Verbreiterung zu einem signifikanten Anstieg des Polarizationsgrads von semipolaren und nonpolaren InGaN/GaN Quantentrögen mit hoher Neigung führt. Darüber hinaus ist der Polarizationsgrad-Abfall bei höheren Ladungsträgerdichten aufgrund des Übergangs vom Boltzmann- zum Fermi-Regime glatter und beginnt bei niedrigerer Ladungsträgerdichte. Das Modell wird auch verwendet, um die besonderen Polarizationseigenschaften von (202¯1) InGaN/GaN Quantentrögen im Vergleich zu (202¯1¯) Quantentrögen zu untersuchen. Durch ihre äquivalenten Bandstrukturen im Rahmen der k·p-Theorie wird erwartet, dass sie ähnliche Polarizationseigenschaften zeigen. (202¯1) Quantentröge haben jedoch durchweg einen niedrigeren Polarizationsgrad als (202¯1¯) Quantentröge. Diese Diskrepanz könnte auf unterschiedliche effektive Verbreiterung ihrer Valenz-Subbänder zurückgeführt werden, die durch die rauere obere Quantentrog-Grenzfläche in (202¯1), durch die größere Empfindlichkeit der Löcher gegenüber dieser oberen Grenzfläche aufgrund des Polarizationsfelds in (202¯1) und /oder durch die unterschiedlichen Lokalisierungsgrade der Löcher induziert werden. InGaN LEDs sind nicht nur stark von inhomogener Verbreiterung beeinflusst, sondern leiden auch unter efficiency droop: Ihr Wirkungsgradmaximum wird bereits bei relativ geringer Stromdichte erreicht und fällt dann deutlich gegenüber ihrer typischen Betriebsbedingungen ab. Eine Möglichkeit, diesen Effekt abzuschwächen, ist, die Ladungsträgerdichte innerhalb des aktiven Bereichs zu verringern, was über verschiedene Ansätze erreicht werden kann. Die aktive Region kann zum Beispiel auf einer 3D-Pufferschicht, auf einem semipolaren/nonpolaren Substrat oder auf einer relaxierten InGaN-Pufferschicht gewachsen werden. Die letzten zwei Ansätze reduzieren/unterdrücken das Polarizationsfeld und führen dadurch zu Wellenfunktionen, die eine grössere Überlappung und Ausbreitung über die aktive Region haben. Damit diese Ansätze überprüft und validiert werden können, ist ein Verfahren erforderlich, um die Ladungsträgerdichte innerhalb der aktiven Region zu bestimmen. Diese komplexe Aufgabe, die den zweiten Schwerpunkt dieser Arbeit bildet, erfordert die Anpassung eines Modells der Ladungsträgerrekombinationsdynamik an experimentellen Daten. Die meisten Methoden, die bereits zur Verfügung stehen, nutzen das einfache ABC-Modell. Die Gültigkeit dieses Modells wird durch Messung von Effizienzkurven auf verschiedenen Proben diskutiert und erweitert, um die Hintergrungladungsträgerdichte bei niedriger Ladungsträgerdichte und Bandfüllung bei hoher Ladungsträgerdichte zu berücksichtigen. Der Polarizationsgrad-Abfall gegen hohe Ladungsträgerdichten wird gleichzeitig mit der Effizienzkurve angepasst, um das Bestimmen der Rekombinationskoeffizienten zu verbessern. Es ist jedoch sehr kritisch, alle Rekombinationskoeffizienten eindeutig zu bestimmen, ohne zeitaufgelöste experimentelle Daten zu berücksichtigen. Da zeitaufgelöste Messungen komplex und zeitaufwändig sind, wird eine neue Methode vorgeschlagen, die auf Bias-abhängiger Photolumineszenzspektroskopie bei Raumtemperatur und auf einem erweiterten ABC-Modell basiert. Bei der Untersuchung semipolarer/nonpolarer LEDs ermöglicht diese Methode das Bestimmen der Ladungsträgerdichte innerhalb der aktiven Region, ohne zeitaufgelöste Messungen durchführen zu müssen. Dies wird anhand polarizationsaufgelöster Effizienzkurven auf einer m-Ebene LED demonstriert. Das Wachsen der aktiven Region auf 3D-Pufferschichten zur Verringerung der lokalen Ladungsträgerdichte erfordert für ihre Charakterisierung experimentelle Techniken mit hoher räumlicher Auflösung. Diese Arbeit berichtet über das experimentelle Know-how, das durch die Charakterisierung einzelner InGaN/GaN Core-Shell Mikrosäulen erworben wurde. Eine gründliche Beschreibung des konfokalen Mikroskops und seiner Ausrichtung ist gegeben, um reproduzierbare polarizationsaufgelöste Photolumineszenzmessungen mit beugungsbegrenzter räumlicher Auflösung zu erreichen, die die ersten lokalen internen Quanteneffizienzmessungen entlang der Seitenfacette von InGaN/GaN Core-Shell Mikrosäulen ermöglichte. / Les sources lumineuses à base de InGaN sont fortement affectées par l'élargissement inhomogène dû aux fluctuations du taux d'indium. Alors que ces effets ont été étudiés extensivement sur le plan-c (par exemple: localisation des porteurs de charge à basse densité de porteurs dûe aux fluctuations de potentiel, délocalisation à plus haute densité de porteurs), seulement peu de travaux sont consacrés à l'étude de l'impact de l'élargissement inhomogène sur les propriétés d'émission des puits quantiques InGaN semipolaires et nonpolaires. En plus d'avoir un recouvrement plus grand des fonctions d'ondes des électrons et des trous, et par conséquent un taux de recombination radiatif plus élevé grâce à la réduction/suppression du champs électrique interne dû aux discontinuités de polarisation aux hétérointerfaces, les puits quantiques crûs dans les directions semipolaires/nonpolaires ont la propriété intéressante d'émettre de la lumière polarisée. La charactérisation et compréhension théorique de leurs propriétés de polarisation optique est l'un des axes de cette thèse. Une corrélation entre la largeur spectrale et le degré de polarisation linéaire (DLP = angl. degree of linear polarization) est mise en évidence par le biais de spectroscopie de micro-photoluminescence confocale résolue en polarisation en fonction de la température et de l'excitation éffectuée sur des puits quantiques planaires semipolaires et nonpolaires ainsi que sur les facettes latérales plan-m de micro-piliers core-shell. Un model théorique basé sur la structure de bandes électroniques calculée par la méthode k·p des fonctions d'enveloppe est développé pour expliquer cette corrélation en prenant l'élargissement inhomogène en compte. En considérant les fluctuations du taux d'indium et la longueur de localisation des électrons et des trous, des élargissements effectifs différents sont appliqués à des groupes de sous-bandes. Le modèle montre que pour les puits quantiques semipolaires/nonpolaires d'haute inclinaison l'élargissement inhomogène engendre une augmentation significative du DLP à température ambiante. De plus, vers les densités de porteurs plus élevées, la chute du DLP induite par la tansition du régime de Boltzmann au régime de Fermi est plus lente et commence à plus basse densité de porteurs. Le modèle est également utilisé pour étudié les propriétés particulières de polarisation optique des puits quantiques (202¯1) comparés aux puits (202¯1¯). Malgré qu'ils aient des structures de bandes équivalentes dans le cadre de la théorie k·p et devraient ainsi avoir des propriétés de polarisation optique identiques, les puits quantiques (202¯1) ont systématiquement un DLP plus bas que les puits quantiques (202¯1¯). Cette divergence est probablement liée aux élargissements effectifs différents qui s'appliquent à leurs sous-bandes de valence en raison de l'interface supérieure plus rugueuse du puit (202¯1), de la sensibilité des trous à l'interface supérieure du puit (202¯1) à cause du champ électrique interne, et/ou du différent degré de localisation des trous En plus d'être fortement affecté par l'élargissement inhomogène, les LEDs InGaN souffrent d'efficiency droop: leur efficacité maximale est atteinte déjà à une densité de courant relativement basse et baisse ensuite significativement vers leurs conditions d'opération typiques. Un moyen pour mitiger cet effet est de réduire la densité de courant dans la zone active, ce qui peut être atteint via plusieurs approches, notamment en croissant la région active sur un template 3D, sur un substrat semipolaire/nonpolaire ou un template d'InGaN relaxé. Les deux dernière approches diminuent/suppriment le champs électrique interne augmantant ainsi le recouvrement des fonctions d'onde et leur étendue dans la zone active. Afin de vérifier ces approches, une méthode pour déterminer la densité de porteurs dans la zone active est nécessaire. Cette tâche complexe, qui est le second axe de ce travail, requière d'ajuster un modèle de la dynamique de recombinaison des porteurs à des données expérimentales. La plupart des méthodes déjà disponibles se basent sur le simple modèle ABC. La validité de ce modèle est discutée à travers des courbes d'efficacité mesurées sur différents échantillons et étendue pour prendre en compte la densité de porteurs dûe au dopage à basse densité de porteurs ainsi que le remplissage des bandes à haute densité de porteurs. La chute du DLP vers les hautes densités de porteurs est ajustée simultanément à la courbe d'éfficacité pour augmenter la robustesse de la détermination des coefficients de recombinaison. Il est cependant montré que sans prendre en compte des données expériemntales résolues en temps il est très difficile d'extraire tous les coefficients de recombinaison sans ambiguosités. Les mesures résolues en temps étant complexes et longues, une nouvelle méthode basée sur un modèle ABC étendu et de la spectroscopie photoluminescence en fonction du bias à température ambiante est proposée. Lorsqu'elle est appliquée à des LEDs semipolaires/nonpolaires, elle permet d'extraire la densité de porteurs dans la région active sans devoir effectuer des mesures résolues en temps. La méthode est démontrée en utilisant des courbes d'efficacité résolues en polarisation measurées sur une LED plan-m. Croître la région active sur un template 3D afin de diminuer la densité locale de porteurs nécessite au final pour sa characterisation une technique expérimentale ayant une haute résolution spatiale. Ce travail résume le savoir-faire expérimental acquis en characterisant des micro-piliers core-shell InGaN/GaN uniques. Une description détaillée du microscope confocal et de son alignement est donnée pour atteindre des mesures de photoluminescence reproductibles et ayant une résolution limitée par la diffraction, ce qui a permis la première mesure locale d'efficacité interne quantique le long de la facette latérale de micro-piliers core-shell InGaN/GaN.

Page generated in 0.0298 seconds