• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genome editing using site-specific nucleases : targeting highly expressed genomic regions for robust transgene expression and genetic analysis

Tennant, Peter Andrew January 2016 (has links)
Integration and expression of exogenous genetic material – in particular, transgenes – into the genomes of model organisms, cell lines or patients is widely used for the creation of genetically modified experimental systems and gene therapy. However, loss of transgene expression due to silencing is still a major hurdle which remains to be overcome. Judicious selection of integration loci can help alleviate the risk of silencing; in recent years the ability to efficiently and specifically target transgene integration has been improved by the advent of site-specific nucleases (SSNs). SSNs can be used to generate double strand breaks (DSBs) in a targeted manner, which increases the efficiency of homologous recombination (HR) mediated transgene integration into predetermined loci. In this work I investigate four human genomic loci for their potential to act as transgene integration sites which will support robust long term expression: the adeno-associated virus (AAV) integration site 1 (AAVS1); the human homologue of the mouse Rosa26 locus (hROSA26); the inosine monophosphate dehydrogenase 2 (IMPDH2) gene and the eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) gene. I also investigate the potential of creating a novel drug-selectable transgene integration system at the IMPDH2 locus to allow for rapid and specific selection of correctly inserted transgenes. In addition to their ability to drive targeted transgene integration, SSNs can be harnessed to specifically disrupt gene function through indel formation following erroneous repair of the induced DSB. Using this strategy, I aimed to answer some important biological questions about eukaryotic translation elongation factor 1 alpha (eEF1A); eEF1A is responsible for providing aminoacylated tRNAs to the ribosome during the elongation phase of protein synthesis. Humans and other vertebrates express two isoforms, eEF1A1 and eEF1A2 (encoded by EEF1A1 and EEF1A2 respectively). During development eEF1A1 is replaced by eEF1A2 in some tissues. The reasons for this remain elusive, but one explanation may lie in the moonlighting functions of eEF1A1, which may not be shared by eEF1A2. Additionally, eEF1A2 can act as an oncogene, while there is no evidence that eEF1A1 is overexpressed in tumours. To begin to untangle these issues I targeted EEF1A1 using SSNs with the aim of making a cell line expressing only the eEF1A2 isoform. This work suggests that eEF1A1 may be essential even in the presence of eEF1A2, though further studies will be required to confirm this.
2

Selective protein functionalisation via enzymatic phosphocholination

Ochtrop, Philipp January 2017 (has links)
Proteins are the most abundant biomolecules within a cell and are involved in all biochemical cellular processes ultimately determining cellular function. Therefore, to develop a complete understanding of cellular processes, obtaining knowledge about protein function and interaction at a molecular level is critical. Consequently, the investigation of proteins in their native environment or in partially purified mixtures is a major endeavour in modern life sciences. Due to their high chemical similarity, the inherent problem of studying proteins in complex mixtures is to specifically differentiate one protein of interest from the bulk of other proteins. Site-specific protein functionalisation strategies have become an indispensable tool in biochemical- and cell biology studies. This thesis presents the development of a new enzymatic site-specific protein functionalisation strategy that is based on the reversible covalent phosphocholination of short amino acid sequences in intact proteins. A synthetic strategy has been established that allows access to functionalised CDP-choline derivatives carrying fluorescent reporter groups, affinity tags or bioorthogonal handles. These CDP-choline derivatives serve as co-substrates for the bacterial phosphocholinating enzyme AnkX from Legionella pneumophila, which transfers a phosphocholine moiety to the switch II region of its native target protein Rab1b during infection. We identified the octapeptide sequence TITSSYYR as the minimum recognition sequence required to direct the AnkX catalysed phosphocholination and demonstrated the functionalisation of proteins of interest carrying this recognition tag at the N- or C-terminus as well as in internal loop regions. Moreover, this covalent modification can be hydrolytically reversed by the action of the Legionella enzyme Lem3, which makes the labeling strategy the first example of a covalent and reversible approach that is fully orthogonal to current existing methodologies. Thus, the here presented protein functionalisation approach holds the potential to increase the scope of possible labeling strategies in complex biological systems. In addition to the labeling of tagged target proteins, a CDP-choline derivative equipped with a biotin affinity-tag was synthesised and used in pull-down experiments to investigate the substrate scope of AnkX and to elucidate the role of protein phosphocholination during Legionella pneumophila infection. / Proteiner utgör huvudbeståndsdelen av alla biomolekyler i en cell. Dessa är involverade i alla cellulära processer som bestämmer cellens egenskaper. För att förstå de cellulära processerna är det nödvändigt att förstå proteinernas funktion på molekylär nivå. Att studera proteiner i deras naturliga omgivning, det vill säga inuti en cell eller i ett cellextrakt, är en stor utmaning i dagens livsvetenskaper. Eftersom proteiner är kemiskt lika varandra så är det svårt att skilja ett från tusentals andra. Att specifikt märka proteiner för att skilja ut dem från bakgrunden har blivit ett viktigt arbetssätt i modern biokemi och cellbiologi. Avhandlingen beskriver utvecklandet av en ny metod för reversibel och kovalent enzymatisk märkning baserat på fosfokolinering/defosfokolinering av en kort aminosyrasekvens i intakta proteiner. En syntesmetod för att framställa onaturliga CDP-kolinderivat har etablerats vilket tillåter oss att framställa CDP-kolin som bär en funktionalitet, vilket kan vara ett färgämne eller en affinitetstagg. Dessa onaturliga CDP-kolinderivat accepteras som co-substrat av enzymet AnkX från Legionella pneumophila vilket transfererar den funktionaliserade delen av CDP-kolinderivatet till en kort aminosyrasekvens baserad på AnkX’s naturliga substrat vid infektion, det lilla GTPaset Rab1. Under avhandlingsarbetets gång identifierades den kortaste aminosyrasekvensen som känns igen av AnkX, endast de åtta aminosyrorna TITSSYYR är nödvändiga för igenkänning av AnkX. Dessa åtta aminosyror kan genetiskt infogas i början, slutet eller mitt i ett protein för igenkänning och funktionalisering via AnkX och våra syntetiska CDP-kolinderivat. Vid Legionellainfektion i eukaryota celler klyvs fosfokolineringen efter en viss tid, eftersom Legionella pneumophila producerar ett fosfodiesteras, Lem3, som tar bort de fosfokolineringar som AnkX har installerat när de inte längre behövs. Vi har använt Lem3 för att ta bort märkning i sekvensen TITSS(PC)YYR, vilket gör vår strategi helt reversibel. Vi har kunnat demonstrera att AnkX-Lem3 systemet accepterar ett brett spektrum av CDP-kolinderivat, vilket gör metoden till den första av sitt slag, eftersom den är fullt reversibel. Vi har vidare undersökt vilka proteiner AnkX reagerar med inuti celler, vi använde oss av ett CDP-kolinderivat funktionaliserat med biotin, vilket har tillåtit oss att fiska ut alla de proteiner som fosfokolineras av AnkX. Förutom de små GTPaserna i Rab-familjen så identifierade vi även IMPDH2, ett enzym som reglerar det hastighetsbestämmande steget i syntesen av guanosin-nukleotider. Detta är mycket intressant, eftersom det leder till frågan ifall Legionella pneumophila manipulerar sin värdcell genom att förändra mängden GTP i förhållande till ATP.
3

Investigation of SARS-CoV-2 and HIV-1 virus-host interactions

Li, Tai-Wei January 2022 (has links)
No description available.

Page generated in 0.0203 seconds