• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 68
  • 48
  • 18
  • 15
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 273
  • 44
  • 34
  • 34
  • 32
  • 32
  • 28
  • 25
  • 24
  • 24
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Development and Application of a New Methodology for Separation and Analysis of Submicrometer-Sized Fungal Particles in Laboratory and Field Study

Seo, Sung-Chul January 2007 (has links)
No description available.
132

Investigation of Mold Design and Process Parameters in Microinjection Molding to Fabricate a Deformable Membrane Mirror

El-Taleb, Ahmed Salem 26 December 2013 (has links)
No description available.
133

Simulation of Thermal Transport in a Nanocomposite Blow Mold

Garg, Deepak January 2009 (has links)
No description available.
134

MULTIPLE CRITERIA OPTIMIZATION STUDIES IN REACTIVE IN-MOLD COATING

Cabrera Rios, Mauricio 02 July 2002 (has links)
No description available.
135

Microfluidics of DNA Suspensions

Cortright, Emily Celia 26 June 2009 (has links)
No description available.
136

Evaluation of Methods to Control Mold on Hardwood Pallets

Blount, Thomas Richard 14 June 2013 (has links)
The objectives of this project were:<br />1.����To compare the drying cost and drying time for oak and poplar pallets for the following mold mitigation strategies for hardwood pallets: air drying, forced air drying (fan shed), kiln drying to 25% moisture content and chemical treatment, and<br />2.����Develop and evaluate a procedure for preventing and controlling mold growth on heat treated hardwood pallets<br />Twenty red oak pallets and twenty yellow-poplar pallets were tested for each drying method to compare costs and to determine drying times. �Additional pallets were obtained to conduct a more thorough air drying procedure. �Drying data was extrapolated to allow estimates of the drying time from green (83% moisture content for poplar and 64% moisture content for oak) to 25%. �<br />After the pallets reached the desired 25% moisture content, they were placed in a 40�" enclosed trailer, inoculated with mold (Aspergillus, Stachybotrys, and Penicillium) and were left undisturbed for a period of 14 days. �After the 14 day incubation period, the pallets were inspected for mold using the ASTM D-4445 Standard Test Method for Fungicides for Controlling Sapstain and Mold on Unseasoned Lumber. �<br />A comparison of drying costs was then conducted to determine which method was the most cost efficient based on the data obtained in this study. �The cost to treat the pallets with each treatment was calculated including electrical cost, labor, and tax values. �In addition to the cost comparison, a Net Present Value (NPV) was calculated to determine which method produced the best outcome over a longer period of time.<br />Two heat treatment and drying schedules were then developed to meet both IPPC-ISPM #15 requirements and achieve the desired 25% moisture content with minimal degrade. �This was accomplished by testing several HT/drying schedules on green yellow-poplar and white oak pallets until the pallets met the criteria for being heat treated and had minimal degrade. �The schedules developed are a modified oak HT/KD schedule that required 30 hours to complete and a modified poplar HT/KD schedule that required 16 hours to complete.<br />The results demonstrated that that mold would not grow on the pallets stored in an enclosed container when the dew point is not reached. Air-drying pallets, chemical application in conjunction with air-drying pallets, fan shed drying pallets and kiln drying pallets to a 19-24% moisture content was demonstrated to prevent mold growth on oak and yellow poplar pallets. Estimates for the time required to dry yellow-poplar and oak pallets to 19% and 25% moisture content were developed for air-drying, forced air-drying and kiln drying for the conditions experienced in Blacksburg, VA between 7/30/2008 and 11/10/2008. Air-drying pallets was found to have the lowest daily operational cost but not the lowest total drying cost. �Fan shed drying had the lowest drying cost to achieve 25% moisture content. �Kiln drying was the most expensive daily and total cost, but yielded the fastest method of drying pallets to 25% moisture content. A NPV cost comparison showed that over a 3 year (36 month) time period, fan shed drying is the most cost effective method of drying pallets based on the values used in this study. Given the environmental conditions experienced between 7/30/2008 and 11/10/2008, no mold grew on the air-dried, fan shed, and kiln dried pallets during the drying process. <br /> / Master of Science
137

Automatic design and optimisation of thermoformed thin-walled structures

Ugail, Hassan, Wilson, M.J. January 2004 (has links)
Yes / Here the design and functional optimisation of thermoformed thin-walled structures made from plastics is considered. Such objects are created in great numbers especially in the food packaging industry. In fact these objects are produced in such vast numbers each year, that one important task in the design of these objects is the minimisation of the amount of plastic used, subject to functional constraints. In this paper a procedure for achieving this is described, which involves the automatic optimisation of the mold shape taking into account the strength of the final object and its thickness distribution, thus reducing the need to perform inefficient and expensive `trial and error¿ experimentation using physical prototypes. An efficient technique for parameterising geometry is utilised here, enabling to create a wide variety of possible mold shapes on which appropriate analysis can be performed. The results of the analysis are used within an automatic optimisation routine enabling to find a design which satisfies user requirements. Thus, the paper describes a rational means for the automatic optimal design of composite thermoformed thin-walled structures.
138

Fungal identification using nanopore sequencing of the Internal Transcribed Spacer region

Billström, Madelene January 2024 (has links)
Fungals are opportunistic pathogens that can cause invasive infections primarily among immunocompromised individuals. Traditionally, fungi have been identified by culturing on agar plates and using morphological criteria. Molecular detection methods such as polymerase chain reaction (PCR) and sequencing is faster and superior at identifying fungi at species level compared to culturing and microscopic examination. The aim of this project was to identify fungi at the species level by sequencing the internal transcribed spacer (ITS) region of different control strains and patient samples. This was accomplished using a nested PCR followed by Nanopore sequencing. Two different workflows using different databases were created. One workflow created a consensus sequence which was followed by a BLAST search. The other workflow used an Emu program and mapped reads against the UNITE database. The result was compared to identification previously achieved. Amplification was successful in 28 out of 30 positive samples. The BLAST workflow managed to identify nine out of eleven samples, but was difficult to interpret. The Emu workflow was only concordant with previous identification in 20 out of 28 species in sequenced samples and failed to identify 4 previously identified fungi at the species level, but was easier to interpret and could identify several species from a mixed culture. Amplifying and sequencing of the ITS region can in several cases provide accurate identification, but the method of extraction, choice of DNA polymerase and choice of database need to be considered for successful amplification and accurate species identification before implementation as a diagnostic method.
139

Characterization and management of major fungal diseases and mycotoxin contamination of grain sorghum in the mid-Atlantic U.S.

Acharya, Bhupendra 11 June 2019 (has links)
Industry demand for local sources of grain for animal feed has increased sorghum production in the mid-Atlantic region of the U.S. Sorghum anthracnose (causal agent Colletotrichum sublineola) and the grain mold complex, which includes mycotoxin-producing Fusarium spp., limit the yield and quality of grain sorghum in humid climates worldwide. A majority of U.S. grain sorghum production is in arid regions, and management strategies have not been developed for the mid-Atlantic U.S. where warm, wet conditions favor disease. The specific objectives of this research were to: (1) determine the effectiveness of fungicides and their application timing for the management of sorghum foliar anthracnose, (2) compare five grain sorghum hybrids for their susceptibility to foliar anthracnose, grain mold and mycotoxin contamination under field conditions, (3) integrate host resistance and fungicide application to manage anthracnose and grain mold, and (4) identify Fusarium spp. associated with grain mold and mycotoxin contamination of sorghum in the mid-Atlantic U.S. For Objective 1, it was determined that a single application of pyraclostrobin-containing fungicide no later than flowering reduced anthrancose, protected yield and maximized farm income. Objective 2 focused on sorghum hybrid selection as a disease management tactic, and it was determined that hybrids with high yield potential and moderate disease resistance should be selected for mid-Atlantic sorghum production in order to maximize grain yield and quality while minimizing the need for fungicide inputs. Objective 3 focused on integrated management and demonstrated that under moderate disease pressure, a high-yielding susceptible hybrid required a single application of pyraclostrobin-based fungicide to minimize fungal diseases and maintain acceptable yields, whereas under high disease pressure it was necessary to integrate hybrid resistance and judicous applications of fungicides. The aim of Objective 4 was to characterize potential causal agents of mycotoxin contamination in mid-Atlantic sorghum, and thirteen phylogenetically distinct Fusarium species (F. lacertarum, F. graminearum. F. armeniacum, F. proliferatum, F. fujikuroi, F. verticillioides, F. thapsinum and several in Fusarium incarnatum-equiseti species complex) were found to be associated with grain mold and fumonisin and/or deoxynivalenol contamination of sorghum grain. This work has provided insights into the impacts of fungal diseases on grain sorghum yield and quality in the mid-Atlantic and has aided in development of best management practices for the region. / Doctor of Philosophy / Sorghum is grown in tropics, sub-tropics and semi-arid region worldwide for food, feed, forage and fuel. Sorghum acreage in the mid-Atlantic is increasing due the demand for locally grown grain by poultry and swine industries. During the growing season, warm and humid conditions are common in the southeastern and mid-Atlantic states favoring fungal diseases development that reduce the grain yield and quality. Anthracnose and grain mold, which includes toxic mycotoxin-producing Fusarium species, are the two major constraints in sorghum production in the region. However, management alternatives have not been developed. The main goal of this research was to develop management strategies to protect yield and maximize farm profitability by controlling anthracnose and grain mold of sorghum using chemicals and/or host resistance. The specific objectives were to: (1) determine the effectiveness of fungicides and their application timing for the management of sorghum foliar anthracnose, (2) compare grain sorghum hybrids for their susceptibility to foliar anthracnose, grain mold and mycotoxin contamination under field conditions, (3) assess the value of integrating host resistance and judicious use of fungicides to manage sorghum anthracnose and grain mold, and (4) identify Fusarium spp. associated with grain mold and mycotoxin contamination of sorghum in the mid-Atlantic U.S. Results from this research indicate that a single application of pyraclostrobin-containing fungicides no later than flowering reduces anthrancose, protects yield, and increases farm income. Sorghum hybrids varied in susceptibility to anthrancnose and grain mold, and planting a moderately resistant hybrid and applying a fungicide under high disease risk conditions provided the greatest return on investment. Both fumonisin and deoxynivalenol were frequently detected from sorghum grain, and mycotoxin contamination was associated with 13 different Fusarium species from three distinct species complexes. Based on the results of this work, best management practices for minimizing sorghum disease losses were developed for the mid-Atlantic region.
140

Primena metoda inverznog inženjerstva u cilju pronalaženja graničnih uslova pri livenju u peščanim kalupima / Application of inverse engineering methods for estimation of boundary conditions in sand casting process

Kovačević Lazar 01 October 2015 (has links)
<p>U disertaciji je razvijena nova eksperimentalna postavka za merenje<br />graničnih uslova pri livenju u peščanim kalupima. Utvrđeno je da se<br />uvođenjem pojma prividne toplotne difuzivnosti materijala kalupa<br />može poništiti greška pozicioniranja termoparova i time smanjiti<br />greška procene graničnih uslova. Dodatno, pokazano je da proces<br />izdvajanja intermetalnih jedinjenja tokom procesa očvršćavanja<br />kalupa može uticati na vrednosti graničnih uslova. Razvijena je i<br />nova empirijska korelaciona funkcija kojom se može opisati promena<br />vrednosti koeficijenta prenosa toplote između kalupa i odlivka.</p> / <p>In this study a new experimental technique and apparatus for estimation of<br />boundary conditions in sand casting process were developed. It is shown<br />that thermocouple positioning errors can be nullified by introducing a concept<br />of apparent heat diffusivity of the mold material. In this way, total error of the<br />heat transfer estimation can be reduced. Additionally, it was found that the<br />process of precipitation of intermetallic compounds can influence the value of<br />achieved metal-mold heat transfer. A novel empirical correlation function is<br />proposed. This function has the ability to accurately describe the change in<br />interfacial heat transfer with the casting surface temperature.</p>

Page generated in 0.0318 seconds