• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 611
  • 257
  • 120
  • 84
  • 62
  • 41
  • 28
  • 19
  • 12
  • 11
  • 5
  • 5
  • 3
  • 3
  • 3
  • Tagged with
  • 1477
  • 187
  • 162
  • 153
  • 143
  • 134
  • 129
  • 121
  • 119
  • 115
  • 114
  • 111
  • 105
  • 85
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Design, synthesis and testing of calpain inhibitors for the treatment of cataract

Chen, Hongyuan January 2007 (has links)
This thesis reports the development of potent and selective inhibitors of m-calpain for the treatment of cataract. SJA6017 has been proven to prevent lens opacity in rat and has been our lead compound. A series of Val-Leu peptidyl aldehyde inhibitors (33a-e, 33g, 33i and 35) have been designed, synthesized, and tested for therapeutic potential as cataract inhibitors. Chapter 1 is an introduction to calpain and the diseases associated with it's over activation. A review of the literature on calpain inhibition is given. Structure activity relationship (SAR) theory is presented. The techniques that have been applied in our research group to drug design include molecular modeling, synthesis, assay and animal studies which are all briefly discussed. The importance of a -strand conformation for an inhibitor to bind to calpain is discussed. Chapter 2 describes the synthesis of m-calpain inhibitors. This comprises the preparation of the Val-Leu dipeptide core 29, Val-Leu dipeptidyl alcohols 31a-g and 31i, and the synthesis of dipeptidyl aldehydes 33a-e, 33g, 33i and 35. The choice of coupling regents and conditions in the coupling reactions is investigated. Sulfur trioxide pyridine oxidation for the conversion of Val-Leu dipeptidyl alcohols to aldehydes is discussed. The molecular modeling and biological assay results are presented.
42

Formation of drug-protein conjugates from captopril

Yeung, J. H. K. January 1984 (has links)
No description available.
43

Studies on the biology and chemical control of barnyardgrass (Echinochloa crus-galli) in rice (Oryza sativa) with the herbicide oxadiargyl

Gitsopoulos, Thomas January 2000 (has links)
No description available.
44

The effect of oestradiol-17#beta# on the ribonucleases and ribonuclease inhibitor of immature rat uterus

Brockdor, F. F. January 1985 (has links)
No description available.
45

2025-12-31 Synthesis and evaluation of inhibitors targeting Coenzyme : a biosynthesis and metabolism in Staphylococcus aureus

Van der Westhuyzen, Renier 12 1900 (has links)
Thesis (Phd (Chemistry and Polymer Science))--University of Stellenbosch, 2010. / Dissertation presented for the degree of Doctor of Philosophy (Chemistry) at Stellenbosch University. / ENGLISH ABSTRACT: The human pathogen Staphylococcus aureus is a major cause of hospital-, and more recently, community-acquired infections. The rate at which this organism is acquiring resistance to antibiotics is increasing while the development of new antibiotics is slowing down. There is therefore a desperate need for new antistaphylococcal agents, and in particular ones with novel mechanisms of action that can be used to circumvent established resistance pathways. Unlike humans, S. aureus employs the essential cofactor coenzyme A (CoA) as its major low molecular weight thiol. Together, CoA and the enzyme CoA disulfide reductase (CoADR) are responsible for maintaining the internal redox homeostasis in this organism, and disruption of this balance (or reduction of CoA levels) may therefore be potential mechanisms by which new antistaphylococcal agents may act. In this study we set out to achieve this by direct inhibition of CoADR, and by inhibition of one or more of the CoA biosynthetic enzymes. For the inhibition of CoADR CoA analogues containing Michael acceptors were designed and prepared by employing a chemo-enzymatic approach. This strategy involved the chemical synthesis of pantothenamides containing α,β-unsaturated ester, ketone and sulfone moieties as Michael acceptors, followed by their biotransformation into the corresponding CoA analogues by three CoA biosynthetic enzymes. The compounds prepared in this manner all inhibited CoADR potently. A full kinetic evaluation of the inhibition by these compounds suggested that these compounds act by alkylation of the single active site cysteine of CoADR in an irreversible fashion. In this study we also set out to determine the mechanism of action of the antistaphylococcal compound CJ-15,801, which is structurally similar to pantothenic acid, the biosynthetic precursor of CoA. Due to this similarity we proposed that the antibiotic properties of CJ-15,801 are based on the inhibition of enzymes involved in CoA biosynthesis and metabolism. Our investigations confirmed that the second enzyme of the CoA pathway, phosphopantothenoylcysteine synthetase (PPCS), acts as the main target of CJ-15,801. These studies were followed by an investigation into alternative synthetic methodologies for the preparation of CJ-15,801 and its analogues. As a result an established Pd-catalyzed coupling reaction was modified and applied in the third known total synthesis of CJ-15,801, as well as of several of its analogues. This protocol has several advantages over its predecessors, most importantly its suitability for preparing these compounds on large (up to one gram) scale. / AFRIKAANSE OPSOMMING: Die menslike patogeen Staphylococcus aureus is 'n wesenlike oorsaak van hospitaal- en meer onlangs gemeenskap-verworwe infeksies. Terwyl die tempo waarteen hierdie organisme weerstandbiedig teenoor antibiotika raak toeneem, neem die ontwikkeling van nuwe antibiotiese middels af. Dit is dus van kardinale belang dat nuwe antistafilokokale middels ontwikkel word, en meer spesifiek antibiotika met 'n nuwe meganisme van aksie wat gebruik kan word om huidige weerstandbiedende padweë te ontwyk. In teenstelling met mense, gebruik S. aureus die essensiele kofaktor koënsiem A (KoA) as sy vernaamste lae molekulere gewig tiol. Die ensiem KoA disulfied reduktase (KoADR) en KoA is saam verantwoordelik om die interne redoks homeostase in hierdie organisme te handhaaf, en ontwrigting van die balans (of vermindering van KoA vlakke) kan dus potensieel 'n meganisme van aksie wees waardeur nuwe antistafilokokale middels kan optree. In hierdie studie het ons gepoog om dit te bewerkstellig deur KoADR direk te inhibeer, asook deur inhibisie van een of meer van die KoA biosintetiese ensieme. Vir die inhibisie van KoADR is KoA-analoë wat Michael-akseptor groepe bevat ontwerp en berei deur van 'n chemo-ensiematiese benadering gebruik te maak. Met hierdie strategie is pantoteenamiede gesintetiseer wat α,β-onversadigde ester, ketoon en vinielsulfoon funksionaliteite as Michael-akseptore bevat, gevolg deur biotransformasie na die ooreenstemmende KoA-analoë met behulp van drie CoA biosintetiese ensieme. Die verbindings gesintetiseer met hierdie metode het almal KoADR potent geinhibeer. 'n Omvattende kinetiese evaluasie het voorgestel dat al hierdie verbindings funksioneer deur alkielering van die enkele aktiewe setel sisteïen van KoADR op 'n onomkeerbare wyse. In die studie het ons ook gepoog om die meganisme van aksie van die antistafilokokale verbinding CJ-15,801 te bepaal. Hierdie verbinding is struktureel soortgelyk aan pantoteensuur, die biosintetiese voorganer van KoA. As gevolg van hierdie ooreenkomste het ons voorgestel dat die antibiotiese aktiwiteit van CJ-15,801 die gevolg is van die inhibisie van een of meer van die ensieme wat verantwoordelik is vir KoA biosintese en metabolisme. Ons ondersoeke het bevestig dat die tweede ensiem in die KoA biosintetiese padweg, naamlik fosfopantotenoïelsisteïensintetase, die hoofteiken van CJ-15,801 is. Hierdie studies is gevolg deur die ondersoek van alternatiewe metodologieë vir die sintese van CJ-15,801 en analoë daarvan. 'n Gevestigde Pd-gekataliseerde koppelings reaksie was gevolglik gemodifiseer en toegepas om slegs die derde totale sintese van CJ-15,801 te bewerkstelling, asook die sintese van verskeie analoë daarvan. Hierdie protokol hou verskeie voordele in vergelyking met sy voorgangers, waarvan die mees belangrikste die bereiding van hierdie verbindings op groot (tot een gram) skaal is.
46

Identifizierung und Testung spezifischer Inhibitoren des Energiestoffwechsels von Tumorzellen / Identification and testing of specific inhibitors of metabolism in tumour cells

Pfetzer, Nadja January 2011 (has links) (PDF)
Charakteristisch für viele maligne Tumorzellen ist eine erhöhte Aufnahme von Glucose und die Bildung großer Mengen Milchsäure auch in Anwesenheit von Sauerstoff (Warburg Effekt) und eine verminderte Nutzung des Zitratzyklus. Als Grund werden Defekte in der mitochondrialen Atmungskette diskutiert. Aber auch eine durch Onkogene gesteigerte Glykolyserate, könnte ursächlich sein. Ein weiterer für Tumorzellen wichtiger Stoffwechselweg, in dem Glucose abgebaut wird, ist der Pentosephosphatweg, dessen Blockade das Wachstum der Krebszellen hemmen könnte. Zudem stellt die Manipulation derjenigen Signalwege, die in den Tumorstoffwechsel involviert und in Tumorzellen überaktiviert (Ras/PI3K/Akt/mTOR- und Raf/MEK/ERK-Signalweg) oder unterdrückt (oxidative Phosphorylierung) sind, mögliche Ansatzpunkte dar. In dieser Arbeit wurde daher in vitro die Wirkung von 15 Substanzen an drei verschiedenen Tumorzelllinien und vier verschiedenen benignen Zellen untersucht, welche in die oben genannten charakteristischen Stoffwechselwege von Tumorzellen eingreifen und gegenwärtig intensiv als mögliche Tumortherapeutika diskutiert werden. Ziel war es, geeignete Kandidaten für eine zielgerichtete Therapie zu identifizieren. Der Schwerpunkt dieser Arbeit war die Beeinflussung des Glucosestoffwechsels in Tumorzellen. Da Glucose sowohl aerob als auch anaerob verstoffwechselt werden kann, wurden in einem ersten Ansatz zum einen Substanzen gestestet, die die Glykolyse auf verschiedenen Ebenen hemmen, zum anderen wurden Substanzen untersucht, die den mitochondrialen Stoffwechsel beeinflussen. Die Wirkung aller 15 Substanzen wurde zunächst jeweils als Einzelbehandlung getestet. Hierbei führten nur sehr hohe Konzentrationen in Tumorzellen zu einem drastisch verminderten ATP-Gehalt, die für benigne Zellen aber ebenfalls toxisch waren. Daher wurde in einem zweiten Schritt untersucht, ob durch die gleichzeitige Manipulation des Glucosestoffwechsels und des mitochondrialen Stoffwechsels mit jeweils subtoxischen Konzentrationen eine tumorselektive Wirkung erreicht werden kann. Bei der Kombination der Substanzen Oxythiamin/NaDCA bzw. 2-DG/Rotenon ergaben sich zwar synergistische Effekte auf die Verminderung des ATP-Gehaltes in den getesteten Tumorzellen, eine generelle tumorselektive Wirkung konnte jedoch durch die kombinierte Behandlung nicht erreicht werden. In jüngster Zeit mehren sich die Hinweise, dass die Glutaminolyse einen sehr wichtigen Stoffwechselweg für Energiegewinnung und Syntheseprozesse von Tumorzellen darstellt. Deshalb wurde in einem dritten Schritt untersucht, ob durch die Hemmung der Glutaminolyse mit der Substanz 6-Diazo-5-oxo-L-norleuzin (DON) eine tumorspezifische Wirkung erreicht werden kann. In der Tat konnte durch DON eine andeutungsweise tumorselektive Wirkung auf den ATP-Gehalt der Zellen erzielt werden, jedoch war das therapeutische Fenster sehr eng. Durch die Hemmung der oxidativen Phosphorylierung wurde in allen drei untersuchten Tumorzelllinien eine gesteigerte Milchsäureproduktion nachgewiesen. Dies ist ein eindeutiger Hinweis dafür, dass in diesen Tumorzellen die Mitochondrien keine Defekte aufweisen. Die hier untersuchten benignen und malignen Zellen wurden hinsichtlich des Glucosestoffwechsels mit verschiedenen Methoden näher charakterisiert, um zu beurteilen, ob sich die Zellen in ihrem Stoffwechselphänotyp unterscheiden. Bei der Quantifizierung der Glucoseaufnahme wurde deutlich, dass auch manche benigne Zellen deutliche Mengen an Glucose aufnehmen, welche allerdings nur der Tumorzelllinie mit der niedrigsten Aufnahme glich. Mittels immunhistochemischer Färbungen wurden charakteristische Proteine des Zuckerstoffwechsels dargestellt. Zudem wurde die Expression von zentralen Genen des Stoffwechsels auf mRNA- bzw. Proteinebene untersucht. Hierbei wurde deutlich, dass sowohl Tumorzellen als auch manche benigne Zellen für die Glykolyse typische Proteine bzw. mRNA stark exprimieren. Fazit der Charakterisierung ist, dass es zwischen den hier verwendeten malignen und benignen Zellen keine eindeutige Differenzierung aufgrund des Stoffwechselprofils gibt, sondern sich die getesteten Zellen nur graduell unterscheiden. Dieses Ergebnis erklärt möglicherweise die geringe Tumorspezifität der getesteten Substanzen. Im Vergleich mit den vielversprechenden Ergebnissen aus der Literatur zeigten die hier gewonnenen in vitro-Daten eindeutig, dass die Wirkung von potenziell tumorhemmenden Substanzen je nach Tumorzelltyp extrem verschieden war. Dies beruht darauf, dass der vorherrschende Stoffwechseltyp (oxidativ bzw. glykolytisch) für jede Tumorentität verschieden ist. Daher muss vermutlich für jede Tumorentität bzw. sogar für jeden Patienten individuell die Wirkung und der Nutzen einer Hemmung des Tumorstoffwechsels untersucht werden, bevor künftig an eine zielgerichtete Therapie gedacht werden kann. / A characteristic feature of aggressive tumour cells is a high uptake of glucose and enhanced lactic acid production even in the presence of oxygen (aerobic glycolysis, “Warburg effect”) with a reduced use of the tricarboxylic acid cycle. Defects in mitochondrial function and oncogene activation are supposed to contribute to increased glycolysis, that is not subjected to the Pasteur effect (reduced rate of glycolysis in the presence of oxygen). The pentose phosphate pathway (PPP) is an important metabolic pathway in cancer cells, supplying building blocks for nucleotide synthesis and NADPH for proper redox control. Hence, inhibition of the PPP might block tumour cell growth. Perturbation of signalling pathways that are involved in tumour cell metabolism and are hyperactivated (Ras/PI3K/Akt/mTOR- and Raf/MEK/ERK-pathway) or suppressed (oxidative phosphorylation, p53) in cancer cells are possible targets for anticancer drugs. Thus, in this work the effect of 15 substances highly discussed as potential anticancer agents which influence the aforementioned metabolic and signalling pathways was evaluated in vitro on three different tumour cells lines [two breast cancer cells lines with different metastatic phenotype (MDA-MB 231 and 468) and one gastric cancer cell line (23132/87)] and four normal cell types [endometrial fibroblasts, endothelial cells (HUVEC), peripheral blood leukocytes and skin keratinocytes]. Aim of the study was to identify suitable candidates for targeted therapies. ATP-level was measured as readout to determine the efficacy of the substances, because the ATP content of cells correlates well with cell viability. The main focus of this work was to selectively modulate the glucose metabolism of cancer cells. Because glucose can be metabolized aerobically and anaerobically, we first tested substances that inhibit glycolysis at different steps and substances that interfere with mitochondrial metabolism. All of the 15 substances were tested as single treatment. Here, only very high concentrations of the respective substance significantly decreased ATP-levels in cancer cells - but to a much greater extend in normal cells. Therefore, in the next step we determined if impairing glucose and mitochondrial metabolism simultaneously with less toxic drug concentrations would be more specific in targeting cancer cells. Although synergistic effects were observed by co-treatment with oyxthiamine/NaDCA and 2-DG/rotenone respectively on reducing ATP-levels, this effect was not selective for tumour cells too. Recently, evidence is coming up that glutaminolysis (degradation of glutamine) is an important metabolic pathway for cancer cells providing energy substrates and building blocks. Thus, we examined if a tumour-specific effect could be achieved by inhibition of glutaminolysis with 6-Diazo-5-oxo-L-norleuzin (DON). Actually, other than the substances interfering with glucose metabolism, DON showed a tumour-specific effect to some extent, although the therapeutical range was very small. Inhibition of oxidative mitochondrial metabolism with the substances rotenone, oligomycin, 2,4-dinitrophenol and rhodamine 123 increased lactic acid production in all three cancer cell lines. Thus, it was possible to impede oxidative phosphorylation and to force the cells to increase glycolysis, indicating that mitochondria had no defects. To determine if tumour cells and normal cells differ in regard of their metabolic phenotype, the cells were analyzed for parameters concerning glucose metabolism with different methods. Quantifying glucose uptake of the cells revealed that some normal cells (fibroblasts, T-cells) take up significant amounts of glucose that are similar to those of cancer cells (MDA-MB 231) which showed the lowest glucose uptake among the three tumour cell lines tested. Characteristic proteins of glucose metabolism were analyzed using immunohistochemistry. Furthermore expression patterns of crucial genes involved in glucose metabolism were analyzed on mRNA and protein level. Thereby, it became obvious that both tumour cells as well as normal cells have very similar expression patterns regarding these typical genes. In conclusion, the characterization of tumour and normal cells did not show any substantial but rather gradual differences concerning the metabolic phenotype. These results might explain the marginal tumour specific effect of the drugs tested herein Compared to the promising results from the literature our in vitro data clearly show that the effect of potential anticancer drugs is extremely different for several tumour cell types. This might be due to the predominant metabolic phenotype (oxidative or glycolytic) of different tumour entities. Thus, we suppose that inhibition of tumour cell metabolism has to be evaluated for every single cancer cell type or even every cancer patient on regard of effect and benefit for implementation of selective cancer pharmacotherapy.
47

Synthese und Eigenschaften N-Acylierter Aziridin-2,3-dicarboxylate als selektive, peptidomimetische Inhibitoren von Cystein-Proteasen der Cathepsin-L-Subfamilie / Synthesis and Properties N-Acylated Aziridin-2,3-dicarboxylates as selective, peptidomimetic Inhibitors of Cystein Proteases of Cathepsin-L-Subfamily

Vicik, Radim January 2004 (has links) (PDF)
Die Cystein-Proteasen der Säuger und Parasiten wurden erst in den letzten zwei Jahrzehnten als pharmazeutisch/medizinisches Target erkannt. Die genauen Aufgaben der einzelnen Enzyme dieser sehr umfangreichen und ständig wachsenden Protease-Familie bleiben zwar teilweise noch unbekannt, es ist jedoch klar, dass ihre Aufgabe nicht nur der unspezifische Protein-Abbau ist. Das Ziel der vorliegenden Arbeit waren die Synthese einer Reihe peptidomimetischer Inhibitoren mit elektrophilem Aziridin-2,3-dicarbonsäure-Baustein und deren Testung an den Proteasen Cathepsin B (human), Cathepsin L (Paramecium tetraurelia), Falcipain-2 (Plasmodium falciparum) und Rhodesain (Trypanosoma brucei rhodesiense). Die Verbindungen sind als irreversible Inhibitoren der Proteasen konzipiert. Der Aziridin-Baustein als Elektrophil wird durch den Cystein-Rest des aktiven Zentrums der Proteasen angegriffen, es erfolgt eine nucleophile Ringöffnung und damit die irreversible Alkylierung der Proteasen. Die Aziridin-Bausteine wurden entweder stereoselektiv aus Tartraten oder als Racemate aus Fumaraten dargestellt. Durch NMR-spektroskopische Versuche wurde der Mechanismus der Epimerisierung der als Intermediate der stereoselektiven Synthese auftretenden Azidoalkohole aufgeklärt. Die N-Acylierung des Aziridin-Bausteins mit den Aminosäuren bzw. Dipeptiden erfolgte über Segmentkopplungen oder über eine schrittweise Anknüpfung der Aminosäuren. Es wurden dabei verschiedenste Methoden der Peptidchemie eingesetzt. Die Hemmkonstanten der synthetisierten Substanzen wurden in einem kontinuierlichen fluorimetrischen Mikrotiterplatten-Assay bei Inhibitor-Konzentrationen von 0.35 - 140 µM ermittelt. Als Substrat diente für alle Enzyme Z-Phe-Arg-AMC. Der Nachweis der Irreversibilität der Hemmung wurde durch Dialyse-Versuche und die Affinitätsmarkierung von Cathepsin L und Falcipain 2 mit Hilfe eines Biotin-markierten Inhibitors erbracht. Bei Inhibitoren, die eine zeitabhängige Hemmung aufweisen, wurden die Alkylierungskonstanten (ki –Werte) ermittelt. Diese sind im Vergleich zu den Konstanten der Epoxysuccinyl-Peptide ca. 1000x kleiner, was frühere Untersuchungen bestätigt. Aus den ermittelten Dissoziationskonstanten (Ki) ist die Selektivität für Cathepsin-L-ähnliche Proteasen eindeutig. Dabei wird die Reihenfolge RD > CL > FP >>> CB gefunden. Der beste Inhibitor für alle Enzyme ist die Substanz 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2), für die Hemmkonstanten im unteren micromolaren bzw. sogar nanomolaren Bereich gefunden werden. Unter den Substanzen finden sich auch einige, die für einzelne Enzyme selektiv sind. Für CL sind es die Verbindungen 517C, 105G, Z-023B, 023A; für CB 034A und 013B und für RD 112C, 222C, 105B, 013A. Dabei gibt es zwei Inhibitoren (105A, 517G), die selektiv nur die parasitären Enzyme FP und RD hemmen. Die Analyse der Struktur-Wirkungs-Beziehungen ergab, dass in Abhängigkeit von den Substituenten am Aziridinring (Benzylester, Ethylester, Disäure), von den Substituenten am Aziridin-Stickstoff (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclische Aminosäure) und der Stereochemie unterschiedliche Bindungsmodi vorliegen müssen. Erste Docking-Versuche, die in Kooperation mit der Arbeitsgruppe Baumann (Institut für Pharmazie und LMC, Universität Würzburg) durchgeführt wurden, bestätigen dies. Postuliert wird für Inhibitoren, die die Sequenz Leu-Pro enthalten, eine Bindung an die S`- Seite von Cathepsin L. Dies erklärt die Selektivität dieser Inhibitoren, denn innerhalb der S`-Substratbindungstaschen finden sich die größten strukturellen Unterschiede zwischen Cathepsin B und den Cathepsin-L-ähnlichen Proteasen. Im Gegensatz dazu wird für eines der Phe-Ala-Derivate eine Bindung an die S-Taschen postuliert, die zwischen den einzelnen Proteasen geringere strukturelle Unterschiede aufweisen. Dieser Inhibitor hemmt, wie fast alle Phe-Ala-Derivate, dementsprechend auch Cathepsin B besser als die Leu-Xxx-Derivate. In Rahmen einer Kooperation mit der Arbeitsgruppe Engels Institut für Organische Chemie, Universität Würzburg) wurden quantenchemische Rechnungen durchgeführt, die u.a. den Einfluss von Substituenten auf die Kinetik und Thermodynamik der nucleophilen Ringöffnung untersuchten. Vorhergesagt wurde, dass Substituenten am Aziridin-Stickstoff, die den Übergangzustand stabilisieren (N-Formyl), zu einer besseren Hemmung führen sollten. Das darauf hin synthetisierte N-Formylaziridin-2,3-dicarboxylat 008B weist eine etwa 5000x bessere Hemmung von CL auf als das nicht-formylierte Diethylaziridin-2,3-dicarboxylat. Die gezielt als "affinity label" entwickelte Biotin-markierte Verbindung 999C wurde zur Identifizierung von Cystein-Proteasen, die von Plasmodium falciparum exprimiert werden, eingesetzt (Kooperation mit der Arbeitsgruppe Gelhaus/Leippe, Institut für Zoologie, Universität Kiel). / Mammalian and parasitic cysteine proteases have been discovered as potential drug targets within the last two decades. The physiological and pathophysiological functions of this huge and growing family of proteases are not yet known in detail. However, their role is no longer considered to be only unspecific protein degradation. The goal of the present work was the syntheses of a series of peptidomimetic cysteine protease inhibitors containing aziridine-2,3-dicarboxylate as electrophilic fragment, and the testing of the synthesized compounds on the cysteine proteases cathepsin B (human), cathepsin L (Paramecium tetraurelia), falcipain 2 (Plasmodium falciparum), and rhodesain (Trypanosoma brucei rhodesiense. The compounds are designed as irreversible protease inhibitors. The aziridine ring represents an electophilic building block which is attacked by the cysteine residue of the proteases` active sites. As a consequence, the nucleophilic ring opening reaction leads to irreversible enzyme alkylation. The aziridine building blocks were synthesized stereoselectively in a chiral pool synthesis starting from tartrates, and as racemates starting from fumarates, respectively. NMR spectroscopic studies were used to clarify the mechanism of epimerization occurring during the synthesis of the azido alcohols which are intermediates of the stereoselective synthetic route. The N-acylation of the aziridines with amino acids or dipeptides was carried out via segment or subsequent peptide coupling. Various methods of peptide chemistry were used. The inhibition constants were determined in fluorimetric microplate enzyme assays with inhibitor concentrations between 0.35-140 µM. In all cases, the substrate Z-Phe-Arg-AMC was used. The irreversibility of inhibition was proven by dialysis assays, and by affinity labelling of CL and falcipain using a biotinylated inhibitor. The alkylation rate constant ki was determined in cases where time-dependent inhibition could be observed. In comparison to epoxysuccinyl peptides the ki -values are lower by three orders of magnitude confirming previous investigations. The Ki values unambiguously show that the compounds exhibit a selectivity for the CL-like enzymes. The order of inhibition potency is RD > CL > FP >>> CB. The most potent inhibitor is 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2) with inhibition constants in the submicromolar and even nanomolar range. Some compounds exhibit selectivity for single enzymes: CL: 517C, 105G, Z-023B, 023A; CB: 034A, 013B; RD: 112C, 222C, 105B, 013A. Compounds 105A and 517G selectively inhibit the parasitic proteases FP and RD. The analysis of the structure-activity-relationship led to the assumption that different binding modes have to exist in dependence on the aziridine ring substituents (benzyl ester, ethyl ester, diacid), of the aziridine nitrogen substituents (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclic amino acid), and of the stereochemistry, respectively. First docking experiments, performed in cooperation with Dr. Baumann`s group (Institue of Pharmay and Food Chemistry, University of Wuerzburg), confirm this assumption. Inhibitors containing a Leu-Pro sequence are predicted to bind into the S`-subsites of CL. Since the most striking structural difference between CB and CL-like proteases is found within these S`-subsites the selectivity between the enzymes may be due to binding into these subsites. In contrast, for a Phe-Ala derivative the docking postulates binding into the S-subsites which do not differ much between the enzymes. As a consequence, CB is inhibited much better by Phe-Ala-derivatives than by Leu-Xxx-derivatives. In cooperation with Prof. Engels` group (Institute of Organic Chemistry, University of Wuerzburg) quantumchemical computations were performed analyzing the influence of substituents on the thermodynamics and kinetics of the nucleophilic ring opening. These calculations predicted that substituents stabilizing the transition state (N-formyl) should improve inhibition potency. In order to proof this predicition the compound 008B (N-formyl aziridine-2,3-dicarboxylate) was synthesized and tested. Indeed, the compound is about 5000x more potent on CL than the non-formylated diethyl aziridine-2,3-dicarboxylate. The principal mechanism of inhibition - the nucleophilic ring opening - was proven in a model reaction by means of NMR spectroscopy and mass spectrometry. The biotinylated compound 999C was designed as an affinity labelling inhibitor usable to label and to identify cysteine proteases expressed by Plasmodium falciparum (cooperation with the group of Dr. Gelhaus, Prof. Leippe, Institute of Zoology, University of Kiel).
48

Synthese und Testung von Aziridin-2-carboxylaten als Cystein-Protease-Inhibitoren / synthesis and testing of aziridine-2-carboxylates as inhibitors of cysteine proteases

Schulz, Franziska January 2006 (has links) (PDF)
Das Ziel der vorliegenden Arbeit war es, eine neue Struktur abgeleitet von den potenten Aziridin-2,3-dicarboxylaten zu synthetisieren und diese dann an verschiedenen humanen und parasitären Cystein-Proteasen zu testen. Dafür wurde als Baustein die Aziridin-2-carbonsäure gewählt, die an C3-Position unsubstituiert ist und an C2-Position eine Carboxyl-Funktion trägt. Außerdem sollte der Ringstickstoff im Gegensatz zu den bisher bekannten N-acylierten Aziridin-2,3-dicarboxylaten basische Eigenschaften besitzten. Die Struktur der synthetisierten Azridin-2-carboxylate ist daher wie folgt gewählt worden: Die durch Cromwell-Synthese erhaltenen Verbindungen wurden als Racemate oder als Diastereomerengemische erhalten. Dabei wurden die Diastereomeren-Verhältnisse der einzelnen Verbindungen über die Integrale in den 1H-NMR-Spektren bestimmt. Die an Position R3 mit einer Aminosäure substituierten Aziridin-2-carboxylate wurden durch eine Modifikation der Cromwell-Synthese erhalten. Es wurden insgesamt 27 Azridin-2-carboxylate synthetisiert, die dann an verschiedenen Proteasen getestet wurden. Zu den getesteten Cystein-Proteasen gehören die parasitären Enzyme Falcipain 2, 3 und Rhodesain, die virale SARS-CoV Mpro und die humanen Proteasen Cathepsin B und L. Es wurde jeweils ein Screening der Substanzen an den Proteasen durchgeführt. Bei den wirksamen Verbindungen wurden dann die Ki-, ki-, k2nd- oder IC50-Werte bestimmt. Außerdem wurden die Substanzen auch an der SAP2, einer Aspartat-Protease aus Candida albicans, getestet, an der sie allerdings kaum eine Hemmwirkung zeigten. Bei den nicht-selektiven Inhibitoren stellte sich die Verbindung 9.1a, die auch an Rhodesain eine gute Aktivität besitzt, als ein noch potenterer Inhibitor heraus. Hauptsächlich zeigten an Rhodesain Verbindungen eine gute Hemmwirkung, die Nε- oder Nα-geschütztes Lysin-, Phenylalanin- oder Asparaginsäureester als Substituenten enthalten. Dabei waren die Verbindungen 9.1a/b, 4.9b und 4.8a/b die potentesten Inhibitoren am Rhodesain und 9.1b, 9.2, 4.4b und 4.8b an Falcipain 2 und 3. An der SARS-CoV Mpro hemmte die Verbindung 9.1b am besten. Es wurde weiterhin die Abhängigkeit der Aktivität der parasitären Cystein-Protease Rhodesain vom pH-Wert bestimmt, indem die Fluoreszenzzunahme durch die hydrolytische Spaltung des Substrates durch das Enzym bei pH-Werten zwischen 2.5 und 8.0 über 30 min vermessen wurde. Dabei zeigte sich, dass das Rhodesain in einem sehr weiten pH-Bereich von 3.0 – 8.0 eine sehr hohe Aktivität aufweist (80 – 100 %) und erst im relativ sauren Bereich bei pH 2.5 die Aktivität nachlässt (~ 60 %). Außerdem wurde auch die Hemmung von Rhodesain durch 9.1b in Abhängigkeit vom pH-Wert analysiert, wobei die Hemmstärke im sauren pH-Bereich durch die Protonierung des Stickstoffes des Aziridinringes sehr stark zunahm. Im Rahmen des SFB630 („Erkennung, Gewinnung und funktionale Analyse von Wirkstoffen gegen Infektionskrankheiten“) konnten viele der synthetisierten Verbindungen an verschiedenen Krankheitserregern, wie Trypanosoma brucei brucei, Leishmania major, sowie an sog. Problemkeimen, zu denen die gram-negativen Erreger Pseudomonas aeruginosa und Escheria coli, sowie die gram-positiven Staphylococcus-Arten S. aureus (Linie 325, 8325) und S. epidermidis (Linie RP62) gehören, untersucht werden. Dabei stellten sich die Verbindungen 9.1a/b an Trypanosoma brucei brucei als wirksame Inhibitoren gegen den Erreger heraus. Dies korreliert auch sehr gut mit der hohen Aktivität der beiden Verbindungen gegen Rhodesain (9.1a: Ki: 15.41 µM; 9.1b: Ki: 2.99 µM), wobei die Verbindung 9.1b allerdings an Makrophagen toxisch wirkte (9.1b: IC50: 80 µM). Außerdem war 9.1b auch ein Inhibitor des Wachstumes und der Biofilmbildung von S. aureus. Gegenüber Plasmodium falciparum zeigten die Verbindungen 4.9a/b (4.9a: IC50: 0.5 µM; 4.9b: IC50: 2.2 µM) und 9.4 (9.4: IC50: 1.7 µM) die größte Aktivität, wobei allerdings diese Verbindungen keine Hemmung an den Falcipainen aufwiesen und somit das Target der Inhibition noch ungeklärt ist. Im Rahmen eines Auslandsaufenthaltes in der Arbeitsgruppe von Prof. Dr. Philip Rosenthal, San Francisco, California, wurde außerdem ein Screening verschiedener im Arbeitskreis synthetisierter Substanzklassen an Falcipain 2, 3 und an Plasmodium falciparum durchgeführt. Die dabei getesteten Substanzklassen sind in Abb. 6.1 aufgezeigt. Die Aziridin-2,3-dicarboxylate II-c, I-v und I-j zeigten dabei die beste Aktivität, sowohl an den Falcipainen als auch an dem Parasiten. Unter den Epoxiden und an Position C3 substituierten Aziridin-2-carboxylaten ist die Verbindung IV-2 die einzige, die eine Hemmwirkung aufweist. Unter den anderen getesten Verbindungen zeigten nur die Ethacrynsäure-Derivate VII-b und VII-f eine antiplasmodiale Aktivität. / The goal of the present work was the syntheses of a new structure derived from the aziridine-2,3-dicarboxylate motif, and the testing against different human and parasitic cysteine proteases. Therefore we chose the aziridine-2-carboxylate motif as building block which is unsubstituted at position C3 of the azridine ring and substituted with a carboxyl function at position C2. In addition to this, the nitrogen of the ring should have basic properties in opposite to the common N-acylated aziridine-2,3-dicarboxylates. The compounds were obtained as racemic or diastereomeric mixtures by the Cromwell synthesis. The diastereomeric excesses were determined by analysis of the integrals of the signals of the ring protons in the 1H-NMR spectra. The aziridine-2-carboxylates substituted with an amino acid ester at position R3 were synthesized by a modification of the Cromwell synthesis. Overall, 27 new aziridine-2-carboxylates were synthesized as new potential irreversible inhibitors of cysteine proteases. The aziridine-2-carboxylates were tested against the parasitic cysteine proteases falcipain 2 and 3 and rhodesain, the viral SARS-CoV Mpro and the human enzymes cathepsin B and L. First, we screened the aziridine-2-carboxylates to identify new potential agents against the proteases. Then we determined the inhibition constants Ki, ki, k2nd or IC50 for the most potent compounds. Against the aspartatic protease SAP2 from Candida albicans the aziridine-2-carboxylates showed no activity. In order to determine the inhibition constants we chose the continuous assay according to Tian and Tsou. The inhibition constants against SARS-CoV Mpro and SAP2 were determined using a FRET assay. Within the non-selective inhibitors the compound 9.1a was identified as a very potent inhibitor of cathepsin L and rhodesain. Compounds showing activity against rhodesain are the Nε- or Nα-protected lysine, phenylalanine or aspartic acid derivatives. Thus, the aziridine-2-carboxylates 9.1a/b, 4.9b and 4.8a/b were the most potent inhibitors against rhodesain and 9.1b, 9.2, 4.4b and 4.8b against falcipain 2 and 3. Against the SARS-CoV Mpro the compound 9.1b showed the highest activity. In order to analyse the pH-dependency of hydrolytic activity of the parasitic cysteine protease rhodesain we determined the activity of the enzyme in dilution assays measuring the increase of the fluorescence at different pH values between 2.5 and 8.0. Rhodesain was active in a wide pH range from 3.0 – 8.0 (80 – 100 %) with decreased activity at pH 2.5 (~ 60 %). In addition to this, we determined the pH-dependence of the inhibition constants of 9.1b against rhodesain. We found that the inhibition potency increased at an acid pH range due to the protonation of the basic nitrogen of the aziridine ring. Within the framework of the Collaborative Research Centre SFB 630 most compounds were examined for the activity against various pathogens: Trypanosoma brucei brucei, Leishmania major, the gramnegative bacteria Pseudomonas aeruginosa and Escheria coli, as well as grampositive Staphylococcus strains S. aureus (Linie 325, 8325) and S. epidermidis (line RP62). Tests against Trypanosoma brucei brucei revealed some active compounds which are not cytotoxic against the host cells, the macrophages (IC50 > 100 µM). The best compounds against this pathogen were 9.1a/b (9.1a: Ki: 15.41 µM; 9.1b: Ki: 2.99 µM). These results correlate well with the inhibition constants of this compounds against rhodesain, but unfortunaly 9.1b showed cytotoxity against the macrophages (9.1b: IC50: 80 µM). Furthermore, 9.1b inhibited the growth and biofilm production of S. aureus. The compounds 4.9a/b (4.9a: IC50: 0.5 µM; 4.9b: IC50: 2.2 µM) and 9.4 (9.4: IC50: 1.7 µM) showed the highest activity against Plasmodium falciparum, but unfortunaly they did not inhibit falcipain 2 or 3 and so the target of the inhibition of the pathogen is uncertain. Within the framework of another collaboration with the working group of Prof. Dr. Philip Rosenthal, San Francisco, California, I determined the inhibition constants of series of different compounds (scheme 6.1) against falcipain 2, falcipain 3 and Plasmodium falciparum. The aziridine-2,3-dicarboxylates II-c, I-v and I-j showed the highest activity both against the falcipains and the pathogen Plasmodium falciparum. Within the series of epoxides and the aziridine-2-carboxylates substituted at position 3 only the compound IV-2 showed activity against the pathogen. Besides this, the ethacrynic acid derivates VII-b and VII-f showed a high antiplasmodial activity.
49

Docking-basiertes virtuelles Wirkstoff-Design von p38 MAP-Kinase-Inhibitoren /

Domeyer, David. Unknown Date (has links) (PDF)
Tübingen, University, Diss., 2005 (Nur beschränkt für den Austausch).
50

Thermodynamic Investigation of Human Nitric Oxide Synthase: Enzyme-Inhibitor Interactions

Al Hussain, Zainab January 2012 (has links)
Nitric oxide (NO) is produced in different mammalian tissues by nitric oxide synthase (NOS), which has three isoforms: neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). All NOS isoforms contain two domains, an oxygenase domain and a reductase domain. NO is an important transmitter of information between cells in many physiological processes; however, overproduction of this molecule may lead to health problems. Therefore, selective inhibition of NOS isoforms has useful therapeutic potential for treatment of certain diseases that can appear because of the pathological overproduction of nitric oxide. Producing useful isoform selective-inhibitors that bind to the active site in the oxygenase domain has proven to be difficult when based solely on the structure of these enzymes. Biophysical studies in combination with structural properties should provide better insights into isoform-specific inhibitor development. The first step of this study was to produce and purify truncated versions of NOS isozymes consisting of the oxygenase domain as they contain the active site of the enzyme. As a result of differences between humans and other mammals in the amino acids found in the second and third shells/layers surrounding the active site, all the experiments were performed with genes coding for human proteins. The major result of this project was the development of an Escherichia coli (E. coli) expression system to produce large amounts of pure protein. This system will allow for the testing of inhibitors that bind to the active site of NOS enzymes.

Page generated in 0.0307 seconds