• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Application de la LIF de molécules aromatiques au dosage de carburants fossiles et biocarburants / Application of the aromatic-based laser-induced fluorescence diagnostic to the quantitative chemical probe of Fossil fuels and Biofuels

Ledier, Constantin 13 December 2011 (has links)
Les industries automobile et aéronautique sont confrontées dans le futur proche à une raréfaction des carburants fossiles, ainsi qu’au problème de pollution de l’environnement émis par les systèmes propulsifs. Pour s’affranchir de ces problèmes, l’utilisation de carburants alternatifs censés apporter rendement et préservation de l’environnement, s’est considérablement développée ces derniers temps. Cependant, leurs impacts sur la pollution, consommation et rendement de combustion ne sont toujours pas clairement établis. En particulier, il est nécessaire de quantifier leurs effets sur les phénomènes physiques clés à la base des processus que sont l’évaporation du carburant liquide et le mélange carburant vapeur/air. L’analyse expérimentale de ces processus physiques nécessite alors l’emploi de diagnostics lasers non-intrusifs et quantitatifs, permettant de mesurer des grandeurs physiques comme les distributions spatiales instantanées de température et de concentration du carburant en phase vapeur. Parmi les techniques optiques les plus attrayantes, l’imagerie de fluorescence induite par laser (PLIF) offre de nombreux avantages. L’objectif de la thèse a été, dans un premier temps, de caractériser les propriétés spectroscopiques de quatre carburants multi-composants, le kérosène (Jet A1), le Biomass-to-Liquid (BtL), le Diesel et l’Ester Méthylique Huile Végétale (EMHV) qui, mis à part le premier, possèdent des propriétés spectroscopiques encore peu connues. L’exploitation de leurs propriétés de fluorescence a ensuite permis d’évaluer leurs capacités à fournir des signaux autorisant la mesure de la température et de la concentration du carburant en phase vapeur. Dans un second temps, un étude exhaustive des propriétés de fluorescence de plusieurs cétones (3-pentanone, benzophénone) et aromatiques (fluoranthène, acénaphtène, naphtalène, 1,2,4-triméthylbenzène…) en fonction de la température et du quenching de l’oxygène moléculaire, a été réalisée à pression atmosphérique pour identifier les traceurs fluorescents potentiellement adaptés au dosage optique des quatre carburants. Les données photophysiques collectées ont ensuite été utilisées pour parfaire l’établissement des couples carburants/traceurs fluorescents ainsi que les stratégies de mesures de température et de concentration de carburant associées. L’exploitation des données acquises lors de différentes campagnes de mesures a ainsi mis en évidence la possibilité de détecter simultanément la fluorescence de plusieurs molécules aromatiques (mono-, di- et/ou tri-aromatique) naturellement présentes ou ajoutées artificiellement dans les carburants. Le cas du Diesel a nécessité le développement d’un carburant modèle pour permettre une étude de son évaporation. L’application de cette nouvelle approche PLIF a été validée sur un injecteur hélicoptère LPP de nouvelle génération fonctionnant avec trois carburants spécifiques que sont le Jet A1, le BtL et un mélange Jet A1/BtL / The automotive and aviation industries are presently confronted with the twin crises of fossil fuel depletion and environmental degradation. Research for alternative fuels, which promise a harmonious correlation with sustainable development, energy conservation, efficiency and environmental preservation, has become highly pronounced in the present context. However, their influence on pollution, consumption and combustion yield are not clearly defined yet. In particular, their effects on key physical processes that initiate these phenomena like fuel evaporation and mixing processes between fuel vapour and air have to be quantified. Experimental analysis of these processes requires the use of non-intrusive and quantitative laser diagnostics, allowing the measurement of key physical parameters like instantaneous spatial distribution of temperature and fuel vapour concentration. Among the optical techniques available thus far, planar laser-induced fluorescence (PLIF) offers many advantages for the study such processes in combustors. The objective of this thesis is then to propose and to develop innovative PLIF strategies to measure fuel distribution and mixture formation when fossil fuels and biofuels are used in aeronautical and automotive combustion chambers. In particular, the fluorescence of various fossil fuels like kerosene (Jet A1) and Diesel, the biodiesel fuel containing Esters (FAME) and the Biomass-To-Liquid fuel (BtL) are investigated. The exploitation of their fluorescence was then used to analyse their capacity to generate signals providing from fluorescent tracers (either present naturally in the fuel or chemically added) that could be used as probe molecules for the measurement of temperature and fuel vapour concentration. To select theses tracers, an exhaustive study of the fluorescence properties of various ketones (3-pentanone, benzophenone) and aromatic molecules (fluoranthene, acenapthene, naphthalene, 1,2,4-trimethylbenzene) with temperature and quenching with molecular oxygen was performed at atmospheric pressure. The photophysical data collected during these experiments have been then used to associate the various fuels with specific fluorescent tracers and to elaborate the strategies of measurement of temperature and fuel concentration associated. Exploitation of the data collected during this thesis thus highlighted the possibility to detect simultaneously the fluorescence of various aromatic molecules (mono-, di-, tri-aromatics) naturally present or artificially seeded in fuels. The specific case of Diesel required the development of a surrogate fuel which allows the study of its evaporation process. An application of these innovative strategies of PLIF measurements has been finally performed on a new generation LPP helicopter injection system running at atmospheric pressure with the following fuels: Jet A1, BtL and a mixture of Jet A1 and BtL. Results obtained allowed the validation of the PLIF strategies defined in this thesis.
22

Controle autom?tico para inje??o otimizada de g?s em po?os de petr?leo equipados para funcionamento com g?s lift cont?nuo

Spindola, Rafael Barbosa 16 July 2003 (has links)
Made available in DSpace on 2014-12-17T14:56:21Z (GMT). No. of bitstreams: 1 RafaelBS.pdf: 1607732 bytes, checksum: d5ad875fd4dc09637b9932966f4df8c0 (MD5) Previous issue date: 2003-07-16 / The continuous gas lift method is the main artificial lifting method used in the oil industry for submarine wells, due to its robustness and the large range of flow rate that the well might operate. Nowadays, there is a huge amount of wells producing under this mechanism. This method of elevation has a slow dynamics due to the transients and a correlation between the injected gas rate and the of produced oil rate. Electronics controllers have been used to adjust many parameters of the oil wells and also to improve the efficiency of the gas lift injection system. This paper presents a intelligent control system applied to continuous gas injection in wells, based in production s rules, that has the target of keeping the wells producing during the maximum period of time, in its best operational condition, and doing automatically all necessary adjustments when occurs some disturbance in the system. The author also describes the application of the intelligent control system as a tool to control the flow pressure in the botton of the well (Pwf). In this case, the control system actuates in the surface control valve / O m?todo de eleva??o por g?s lift cont?nuo ? o principal m?todo de eleva??o artificial utilizado, principalmente, para produ??o em po?os submarinos devido a sua robustez e a larga faixa de vaz?o que o po?o pode produzir. H? um grande percentual de po?os produzindo sob este mecanismo no Brasil. Este tipo de m?todo de eleva??o apresenta algumas caracter?sticas pr?prias, sendo uma delas sua din?mica lenta devido aos transientes e outra ? a exist?ncia de uma correla??o entre a vaz?o de g?s injetado e a vaz?o de ?leo produzido. Controladores eletr?nicos t?m sido utilizados para realizar ajustes em alguns par?metros do po?o e melhorar a efici?ncia de inje??o de g?s lift. Este trabalho apresenta um sistema inteligente de controle autom?tico da inje??o de g?s, baseando-se em regras de produ??o, que busca manter os po?os equipados para g?s lift cont?nuo produzindo o maior tempo poss?vel, nas condi??es ?timas de opera??o e que faz os ajustes autom?ticos necess?rios quando ocorre alguma perturba??o no sistema. Mostra-se que ? poss?vel, utilizando o sistema inteligente apresentado, exercer o controle da press?o de fluxo no fundo do po?o (Pwf) atrav?s da manipula??o da abertura da v?lvula de controle de superf?cie
23

Technologie výroby plastového krytu mobilního telefonu / Production technology of mobile phone plastic cover

Heralt, Aleš January 2009 (has links)
The master´s thesis is focused on technology of injection plastics. The specified part is guard cover of mobile phone. The first part of thesis is focused on description of technology with priority on construction of form. The second part of thesis includes calculations of parameters, which are needed for production, along with techno-economic evaluation of selected construction design.
24

Experimental Study of the Urea-Water Solution Injection Process

Moreno, Armando Enrique 28 March 2022 (has links)
[ES] La industria y la comunidad investigadora están trabajando para desarrollar herramientas y tecnologías que contribuyan a la reducción de emisiones contaminantes. Uno de los sectores afectados por la normativa anticontaminación es el transporte. Nuevas tecnologías están evolucionando, especialmente componentes de los sistemas de inyección, diseño de cámaras de combustión, elementos de postratamiento, la hibridación, entre otros. Los sistemas de reducción catalítica selectiva (SCR) han sido una de las claves para alcanzar los objetivos de las normativas de emisiones, especialmente de Óxidos Nitrosos (NO𝑥). La tecnología SCR se emplea para eliminar los NO𝑥 presentes en los gases de escape de un motor. El proceso de inyección de la solución de urea-agua (UWS) determina las condiciones iniciales para la mezcla y evaporación del fluido en el sistema de reducción catalítica selectiva. Para un correcto funcionamiento, el inyector UWS debe dosificar una cantidad adecuada de líquido en el tubo de escape para evitar la formación de depósitos y garantizar la eficiencia del post-tratamiento. Esta tarea requiere la caracterización hidráulica del inyector y de la evolución del spray. El objetivo de esta tesis es la comprensión de los procesos de inyección de solución urea-agua en condiciones de funcionamiento realistas, similares a las que se encuentran en un tubo de escape de motor. Para ello, este trabajo se centra en el desarrollo de nuevas instalaciones experimentales que permitan realizar la caracterización hidráulica combinando medidas de flujo de cantidad de movimiento y masa inyectada. Posteriormente, el chorro de UWS se visualiza aplicando técnicas ópticas a varios niveles de temperatura y flujo másico de aire, en un banco de pruebas diseñado para este propósito. En cuanto a la caracterización hidráulica del inyector de UWS, el método se basa en medir el flujo de cantidad de movimiento para comprender la influencia de diferentes variables como el fluido inyectado, la presión de inyección, entre otros. Las medidas se realizaron utilizando una instalación experimental desarrollada en CMT-Motores Térmicos para la determinación del flujo de cantidad de movimiento, la cual fue modificada para cumplir con los requisitos de operación de estos inyectores. Además, la masa inyectada se obtiene experimentalmente para las mismas condiciones de funcionamiento. La metodología propuesta permitió calcular el flujo másico de estos atomizadores de baja presión, así como el coeficiente de descarga, que son datos útiles para futuras actividades de modelado. Se diseñó una instalación experimental para estudiar la atomización del fluido UWS en condiciones similares a las del tubo de escape del motor. La evolución del spray se caracterizó desde el punto de vista macroscópico, desarrollando una metodología para la determinación de la penetración y del ángulo del chorro. El método se basa en la configuración óptica conocida como diffused-back-light en una configuración de campo lejano. La penetración del spray se dividió en dos zonas: el inicio del chorro y el cuerpo principal. Se observó que la parte inicial del spray inyectado no se ve particularmente afectada por la presión de inyección sino más bien por la temperatura de la camisa de enfriamiento del inyector. El proceso de atomización se investigó mediante la misma técnica de diagnóstico óptico, diffused-back-lighting, acoplado a una lente microscópica especial. Se cuantificó la distribución del diámetro de las gotas y la velocidad de las gotas (en los componentes axial y tangencial) del chorro, en diferentes niveles de presión de inyección y flujo de aire. Se empleó una cámara de alta velocidad para capturar las imágenes de la fase líquida, comparando las gotas de líquido atomizado en tres regiones diferentes del chorro. Como resultado de este estudio, se puede observar que una mayor presión de inyección produce más gotas con diámetros menores favoreciendo el proceso de atomización. / [CA] Noves tecnologies estan evolucionant, especialment components dels sistemes d'injecció, disseny de cambres de combustió, elements de posttractament, la hibridació, entre altres. Els sistemes de reducció catalítica selectiva (SCR) han sigut una de les claus per a aconseguir els objectius de les normatives d'emissions, especialment d'Òxids Nitrosos (NO𝑥). La tecnologia SCR s'empra per a eliminar els NO𝑥 presents en els gasos de fuita d'un motor. El procés d'injecció de la solució d'urea aigua (UWS) determina les condicions inicials per a la mescla i evaporació del fluid en el sistema de reducció catalítica selectiva. Per a un correcte funcionament, l'injector UWS ha de dosar una quantitat adequada de líquid en el tub d'escapament per a evitar la formació de depòsits i garantir l'eficiència del post-tractament. Aquesta tasca requereix la caracterització hidràulica de l'injector i de l'evolució de l'esprai. L'objectiu d'aquesta tesi és la comprensió dels processos d'injecció de solució urea-aigua en condicions de funcionament realistes, similars a les que es troben en un tub d'escapament de motor. Per a això, aquest treball se centra en el desenvolupament de noves instal·lacions experimentals que permeten realitzar la caracterització hidràulica combinant mesures de flux de quantitat de moviment i massa injectada. Posteriorment, el doll de UWS es visualitza aplicant tècniques òptiques a diversos nivells de temperatura i flux màssic d'aire, en un banc de proves dissenyat per a aquest propòsit. Quant a la caracterització hidràulica de l'injector de UWS, el mètode es basa a mesurar el flux de quantitat de moviment per a comprendre la influencia de diferents variables com el fluid injectat, la pressió d'injecció, la contrapressió i la temperatura del sistema sobre les característiques del flux. Les mesures es van realitzar utilitzant una instal·lació experimental desenvolupada en CMT-Motores Térmicos per a la determinació del flux de quantitat de moviment, la qual va ser modificada per a complir amb els requisits d'operació d'aquests injectors. A més, la massa injectada s'obté experimentalment per a les mateixes condicions de funcionament. La metodologia proposada va permetre calcular el flux màssic d'aquests atomitzadors de baixa pressió, així com el coeficient de descàrrega, que són dades útils per a futures activitats de modelatge. Es va dissenyar una instal·lació experimental per a estudiar l'atomització del fluid UWS en condicions similars a les del tub d'escapament del motor. L'evolució de l'esprai es va caracteritzar des del punt de vista macroscòpic, desenvolupant una metodologia per a la determinació de la penetració i de l'angle del doll. El mètode es basa en la configuració òptica coneguda com diffusedback-light en una configuració de camp llunyà. La penetració de l'esprai es va dividir en dues zones: l'inici del doll i el cos principal. Es va observar que la part inicial de l'esprai injectat no es veu particularment afectada per la pressió d'injecció sinó més aviat per la temperatura de la camisa de refredament de l'injector. El procés d'atomització es va investigar mitjançant la mateixa tècnica de diagnòstic òptic, diffused-back-lighting, acoblat a una lent microscòpica especial. Es va quantificar la distribució del diàmetre de les gotes i la velocitat de les gotes (en els components axial i tangencial) del doll, en diferents nivells de pressió d'injecció i flux d'aire. Es va emprar una càmera d'alta velocitat per a capturar les imatges de la fase líquida, comparant les gotes de líquid atomitzat en tres regions diferents del doll: la primera prop de l'eixida de la tovera i les altres dues a la regió desenvolupada de l'esprai, una alineada amb l'eix de l'injector i l'altra en la perifèria del mateix. Com a resultat d'aquest estudi, es pot observar que una major pressió d'injecció produeix més gotes amb diàmetres menors afavorint el procés d'atomització. / [EN] One of the sectors affected by the anti-pollution regulations is the transportation, since it is responsible for around 20% of the green house gases emissions production. New technologies are evolving, especially subsystems as fuel injection components, combustion design, after-treatment and hybridization. The SCR has been one of the most important to reach the emission targets, specially for Nitrous Oxides (NO𝑥). The SCR technology is employed in the elimination of the NO𝑥 present in the exhaust gases of a combustion engine. The injection process of the urea-water solution (UWS) determines the initial conditions for the mixing and evaporation of the fluid in the selective catalytic reduction system. For a proper operation, the UWS injector must dose an adequate amount of liquid into the exhaust pipe to avoid deposit formation and to guarantee the SCR system efficiency. This task requires the knowledge of the performance of the injector and the evolution of the spray. The goal of this thesis is the comprehension of the urea-water solution injection processes under realistic operating conditions, similar to those of an engine exhaust pipe. To this end, this work focuses on the development of new experimental facilities that enable to perform the hydraulic characterization combining momentum flux measurements and injected mass. Afterwards, the UWS jet is visualized by applying optical techniques at various levels of air temperature and mass flow, in a novel test rig designed for this purpose. Regarding to the hydraulic performance of the UWS injector, the approach is based on measuring the spray momentum flux in order to understand the influence of different variables as injected mass, injection pressure, back pressure and cooling temperature on the flow characteristics. The measurements were carried out using an experimental facility developed at CMT-Motores Térmicos for the determination of spray momentum flux, where the configuration of the system was customized to fulfill the injector operation requirements. Also, the injected mass is obtained experimentally for the same operating conditions. The proposed methodology allowed to calculate the mass flow rate of this low pressure atomizers and the discharge coefficients, which are useful data for future computer modeling activities. A dedicated test facility was designed to study UWS spray under conditions that resemble those of the engine exhaust pipe. The liquid spray evolution is characterized from the macroscopic point of view, developing a methodology for the determination of the spray penetration and spreading angle. The method is based on the optical setup known as back-light in a far-field configuration. The spray penetration was divided in two zones, the spray burst and the body, where it was observed that the initial part of the injected spray is not particularly affected by the injection pressure but was rather influenced by the cooling temperature of the injector. Besides, the liquid atomization process of the UWS dosing system is investigated using optical diagnosis through back-light imaging coupled with a special lens. The droplet diameter distribution and the droplet velocity (in the injector axial and tangential components) of the liquid spray are quantified under different air flow and injection pressure levels. A high-speed camera was used for capturing the liquid phase images, comparing the atomized liquid drops in three different regions of the plume: the first one near the nozzle exit, and the other two in the developed region of the spray, one aligned with the injector axis and the other at the spray periphery. The results of this study demonstrated that injection pressure produces more droplets with smaller diameters favoring the atomization process. / Moreno, AE. (2022). Experimental Study of the Urea-Water Solution Injection Process [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181637

Page generated in 0.0205 seconds