• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 31
  • 22
  • 12
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 426
  • 274
  • 168
  • 158
  • 157
  • 148
  • 122
  • 74
  • 67
  • 65
  • 51
  • 50
  • 46
  • 43
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Analyse observationelle des conditions physiques dans des régions de formation stellaire galactique et extra-galactique

Kristensen, Lars 19 October 2007 (has links) (PDF)
Je présente et j'analyse dans ma thèse des observations de l'émission dans l'infrarouge proche de transitions rovibrationelles de H2 dans des régions de formation stellaire. Le sujet principal de ce travail concerne de nouvelles observations du nuage moléculaire d'Orion (OMC1) et en particulier de la région BN-KL. Les données sont constituées d'images des raies individuelles de H2 obtenues à haute résolution spatiale avec le Telescope Canada-France-Hawaii et avec l'ESO VLT. Grâce à la haute résolution spatiale du VLT il est possible d'analyser en détail (jusq'à 60 UA ~0.''13) des objets individuels dans cette région. De plus, j'ai analysé l'émission de H2 et [FeII] dans des écoulements (« outflows ») présents dans deux nuages sombres (les globules de Bok BHR71 et BHR137) ainsi que dans un « blob » à haute excitation dans le grand nuage de Magellan (N159-5). Ici les données sont constituées de spectres en fente longue obtenus à l'ESO-VLT. Pour réaliser ce travail j'ai tout d'abord calculé une grille complète de modèles de chocs composée de ~25 000 simulations (correspondant à 400 Go, environ). Ces modèles qui sont les plus récents comportent un grand nombre de paramètres libres qui peuvent être ajustés. Une grande partie demon travail a été d'analyser les résultats de cette grille avant de les mettre en ligne. En effet les résultats ne sont pas tous crédibles, et il m'a donc fallu de développer des méthodes pour les vérifier. Mais avec une bonne compréhension du modèle et un solide sens de la physique des chocs, il est maintenant assez facile d'interpréter les données sur H2 et [FeII]. Les modèles me permettent ensuite de prédire les conditions physiques à grande échelle dans OMC1, par exemple la densité, la vitesse des chocs, l'intensité du champ magnétique, etc. En général la densité du milieu avant le choc est ~105-107 cm-3 et la vitesse de choc est dans la gamme 10-40 km.s-1. Un autre résultat très intéressant de mon travail est le développement d'une nouvelle méthode pour analyser les chocs en arc (« bow shocks ») observés à une haute résolution spatiale. Pour un choc en arc isolé je prédis une vitesse de choc de ~50 km.s-1 et une densité avant le choc de 5×105 cm-3. La vitesse 3D a été mesurée très récemment à 55 km.s-1. Cela donne une confirmation indépendante de nos résultats.
172

Experimental Investigation on the Morphology of Interstellar Ice Analogues

Accolla, Mario 15 April 2010 (has links) (PDF)
Spectroscopic observations of cold and dense interstellar clouds show the presence of "dirty ice" mantles on dust grains, mainly composed by water molecules. These ices are enriched by the presence of other simple species that are either formed by surface reactions or accreted from the gas phase. While there is quite a general consensus that interstellar water ice is mainly amorphous, its morphology (porous or compact) still remains poorly known. Morphology is important due to its influence both on the catalytic efficiency of grain surfaces and on the release to the grain of the fraction of the formation energy of species, as shown by laboratory simulations of molecular hydrogen formation. Ice porosity may be identified through the weak infrared absorption features (~ 2.7 μm) showing the presence of dangling bonds on the pore surface. To our knowledge, there has been to date no detection of such absorptions in the infrared spectra of interstellar ices, perhaps suggesting that they may have a compact nature. It has been already investigated that interstellar porous ice may be compacted by the transient heating of stellar radiation and cosmic ray bombardment. In this thesis I report an experimental work, performed using FORMOLISM (the experimental apparatus at the University of Cergy-Pontoise - France), that shows relevant changes in the ice morphology following atomic hydrogen exposure. In particular, it is shown that a thin highly porous ice film is gradually changed into a more compact structure. This is probably due to the transient heating caused by the energy released to the ice during H2 formation. Such a process may also produce in the interstellar space compact amorphous ice mantles concurrently with the other envisaged processes. Moreover, I have experimentally analyzed the morphology of the just formed water ice. Analysing one of the possible mechanism of water formation (the pathway H + O2) under conditions mimicking those found in a molecular cloud, we have found that the water just synthesized has a non-porous structure. Indeed, the layers of water formed in this way show the kinetic characteristics typical of a compact (non-porous) ice, as for instance the D2 TPD peak position.
173

Modelling of the heliosphere and cosmic ray transport / Jasper L. Snyman

Snyman, Jasper Lodewyk January 2007 (has links)
Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2008.
174

The warm-hot environment of the Milky Way

Williams, Rik Jackson, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 134-137).
175

The AGN-host galaxy connection : new insights from the extended ionised gas

Husemann, Bernd January 2011 (has links)
Active Galactic Nuclei (AGN) are powered by gas accretion onto supermassive Black Holes (BH). The luminosity of AGN can exceed the integrated luminosity of their host galaxies by orders of magnitude, which are then classified as Quasi-Stellar Objects (QSOs). Some mechanisms are needed to trigger the nuclear activity in galaxies and to feed the nuclei with gas. Among several possibilities, such as gravitational interactions, bar instabilities, and smooth gas accretion from the environment, the dominant process has yet to be identified. Feedback from AGN may be important an important ingredient of the evolution of galaxies. However, the details of this coupling between AGN and their host galaxies remain unclear. In this work we aim to investigate the connection between the AGN and their host galaxies by studying the properties of the extendend ionised gas around AGN. Our study is based on observations of ~50 luminous, low-redshift (z<0.3) QSOs using the novel technique of integral field spectroscopy that combines imaging and spectroscopy. After spatially separating the emission of AGN-ionised gas from HII regions, ionised solely by recently formed massive stars, we demonstrate that the specific star formation rates in several disc-dominated AGN hosts are consistent with those of normal star forming galaxies, while others display no detectable star formation activity. Whether the star formation has been actively suppressed in those particular host galaxies by the AGN, or their gas content is intrinsically low, remains an open question. By studying the kinematics of the ionised gas, we find evidence for non-gravitational motions and outflows on kpc scales only in a few objects. The gas kinematics in the majority of objects however indicate a gravitational origin. It suggests that the importance of AGN feedback may have been overrated in theoretical works, at least at low redshifts. The [OIII] line is the strongest optical emission line for AGN-ionised gas, which can be extended over several kpc scales, usually called the Narrow-Line Region (NLR). We perform a systematic investigation of the NLR size and determine a NLR size-luminosity relation that is consistent with the scenario of a constant ionisation parameter throughout the NLR. We show that previous narrow-band imaging with the Hubble Space Telescope underestimated the NLR size by a factor of >2 and that the continuum AGN luminosity is better correlated with the NLR size than the [OIII] luminosity. These affects may account for the different NLR size-luminosity relations reported in previous studies. On the other hand, we do not detect extended NLRs around all QSOs, and demonstrate that the detection of extended NLRs goes along with radio emission. We employ emission line ratios as a diagnostic for the abundance of heavy elements in the gas, i.e. its metallicity, and find that the radial metallicity gradients are always flatter than in inactive disc-dominated galaxies. This can be interpreted as evidence for radial gas flows from the outskirts of these galaxies to the nucleus. Recent or ongoing galaxy interactions are likely responsible for this effect and may turn out to be a common prerequisite for QSO activity. The metallicity of bulge-dominated hosts are systematically lower than their disc-dominated counterparts, which we interpret as evidence for minor mergers, supported by our detailed study of the bulge-dominated host of the luminous QSO HE 1029-1401, or smooth gas accretion from the environment. In this line another new discovery is that HE 2158-0107 at z=0.218 is the most metal poor luminous QSO ever observed. Together with a large (30kpc) extended structure of low metallicity ionised gas, we propose smooth cold gas accretion as the most likely scenario. Theoretical studies suggested that this process is much more important at earlier epochs of the universe, so that HE 2158-0107 might be an ideal laboratory to study this mechanism of galaxy and BH growth at low redshift more detailed in the furture. / Aktive Galaxienkerne (AGN) entstehen durch die Akkretion von Gas auf massive Schwarze Löcher, welche im Zentrum jeder Galaxie mit einer spherodialen Komponente vermutet werden. Die Leuchtkraft eines AGN kann die seiner gesamten Muttergalaxie um Größenordnungen übersteigen. In diesem Fall werden AGN oft als Quasi-Stellare Objekte (Quasare) bezeichnet. Spezielle Mechanismen müssen für das Auslösen dieser Kernaktivität in Galaxien verantwortlich sein. Verschiedene Prozesse wurden bereits identifiziert, aber der entscheidende Mechanismus wurde bisher noch nicht entdeckt. Die Wechselwirkung mit einem AGN könnte außerdem einen entscheidenden Einfluss auf die Entwicklung von Galaxien haben. Es ist noch unklar wie diese Wechselwirkung genau abläuft und ob es die Sternentstehung in Galaxien beeinflusst. In dieser Arbeit studieren wir die Eigenschaften des ausgedehnten ionisierten Gases in AGN-Muttergalaxien, um mögliche Wechselwirkungen zu untersuchen. Wir benutzen dazu eine Stichprobe von ~50 Quasaren bei geringer Rotverschiebung (z<0.3), die mit der neuartigen Technik der Integralfeld-Spektroskopie beobachtet wurden. Diese Technik kombiniert bildgebende und spektroskopische Verfahren. Wir können mit unserer Analyse zeigen, dass die spezifische Sternentstehungsrate in einigen Scheiben-dominierten AGN-Muttergalaxien vergleichbar mit denen von normalen Galaxien ohne Kernaktivität ist. Allerdings können wir in einigen AGN-Muttergalaxien keine Anzeichen von Sternentstehung feststellen. Ob Sternentstehung in diesen Galaxien momentan durch die Wechselwirkung mit dem AGN unterdrückt wird, ist daher nicht eindeutig. Hinweise auf Gasausflüsse liefert die Kinematik des ionisierten Gases für einige wenige Objekte, doch die Kinematik für die meisten AGN-Muttergalaxien kann allein durch das Wirken der Gravitation erklärt werden. Daraus schließen wir, dass der Einfluss von AGN auf ihre Muttergalaxien geringer sein könnte als theoretisch angenommen wird. Die [OIII] Emissionslinie ist die stärkste optische Linie für AGN-ionisiertes Gas und kann sich über eine Region von mehreren kpc vom Kern erstrecken, die als "Narrow-Line Region" (NLR) bezeichnet wird. Durch eine systematische Untersuchung der NLR-Ausdehnung können wir eine Beziehung zwischen NLR-Radius und AGN-Leuchtkraft bestimmen. Diese Relation ist konsistent mit einem konstanten Ionisationsparameter über die gesamte Ausdehnung der NLR. Frühere Studien mit dem Hubble Weltraumteleskop unterschätzten die Größe der NLR um mehr als einen Faktor 2. Andererseits können wir nicht für alle Quasare eine ausgedehnte NLR nachweisen, wobei eine NLR-Detektion bei einer höheren Radioleuchtkraft des Quasars wahrscheinlicher ist. Dies deutet auf eine Wechselwirkung eines Radio-Jets mit dem kernumgebenden Gas hin. Wir benutzen Emissionslinien des ionisierten Gases, um den Anteil von schweren Elementen im Gas, die so genannte Metallizität, zu bestimmen. Dabei finden wir, dass die radialen Metallizitätsgradienten in Scheiben-dominierten AGN-Muttergalaxien deutlich flacher sind als in vergleichbaren Galaxien ohne Kernaktivität, was wir als Anzeichen für radialen Gastransport vom Rand der Galaxien zum Kern interpretieren. Dies könnte durch kürzliche oder immer noch andauernde gravitative Wechselwirkungen zwischen Nachbargalaxien entstanden sein und stellt eventuell eine Voraussetzung für Kernaktivität dar. Sehr interessant ist unser Ergebnis, dass die ellptischen AGN-Muttergalaxien eine geringere Metallizität aufweisen als die Spiralgalaxien. Dies könnte z.B. durch das Verschmelzen mit kleinen Nachbargalaxien induziert werden, welche eine intrinsisch geringe Metallizität aufweisen. Am Beispiel der elliptischen Muttergalaxie des Quasars HE 1029-1401 können wir durch eine detaillierte Analyse des ionisierten Gases verschiedene Indizien für einen solchen Prozess nachweisen. Eine weiteres Resultat dieser Arbeit ist die Entdeckung eines leuchtkräftigen Quasars mit der geringsten Metallizität, die bisher für solche Objekte nachgewiesen werden konnte. Wir interpretieren die geringe Metallizität und die Ausdehnung des ionisierten Gases über 30kpc als deutliche Indizien für die Akkretion von intergalaktischem Gas. Dieser Prozess findet viel häufiger im frühen Universum statt. HE 2158-0107 könnte daher ein ideales Objekt sein, um diesen Prozess im nahen Universum detaillierter studieren zu können.
176

The relation between interstellar turbulence and star formation

Klessen, Ralf S. January 2004 (has links)
Eine der zentralen Fragestellungen der modernen Astrophysik ist es, unser Verständnis fuer die Bildung von Sternen und Sternhaufen in unserer Milchstrasse zu erweitern und zu vertiefen. Sterne entstehen in interstellaren Wolken aus molekularem Wasserstoffgas. In den vergangenen zwanzig bis dreißig Jahren ging man davon aus, dass der Prozess der Sternentstehung vor allem durch das Wechselspiel von gravitativer Anziehung und magnetischer Abstossung bestimmt ist. Neuere Erkenntnisse, sowohl von Seiten der Beobachtung als auch der Theorie, deuten darauf hin, dass nicht Magnetfelder, sondern Überschallturbulenz die Bildung von Sternen in galaktischen Molekülwolken bestimmt.<br /> <br /> Diese Arbeit fasst diese neuen Überlegungen zusammen, erweitert sie und formuliert eine neue Theorie der Sternentstehung die auf dem komplexen Wechselspiel von Eigengravitation des Wolkengases und der darin beobachteten Überschallturbulenz basiert. Die kinetische Energie des turbulenten Geschwindigkeitsfeldes ist typischerweise ausreichend, um interstellare Gaswolken auf großen Skalen gegen gravitative Kontraktion zu stabilisieren. Auf kleinen Skalen jedoch führt diese Turbulenz zu starken Dichtefluktuationen, wobei einige davon die lokale kritische Masse und Dichte für gravitativen Kollaps überschreiten koennen. Diese Regionen schockkomprimierten Gases sind es nun, aus denen sich die Sterne der Milchstrasse bilden. Die Effizienz und die Zeitskala der Sternentstehung hängt somit unmittelbar von den Eigenschaften der Turbulenz in interstellaren Gaswolken ab. Sterne bilden sich langsam und in Isolation, wenn der Widerstand des turbulenten Geschwindigkeitsfeldes gegen gravitativen Kollaps sehr stark ist. Überwiegt hingegen der Einfluss der Eigengravitation, dann bilden sich Sternen in dichten Gruppen oder Haufen sehr rasch und mit grosser Effizienz. <br /> <br /> Die Vorhersagungen dieser Theorie werden sowohl auf Skalen einzelner Sternentstehungsgebiete als auch auf Skalen der Scheibe unserer Milchstrasse als ganzes untersucht. Es zu erwarten, dass protostellare Kerne, d.h. die direkten Vorläufer von Sternen oder Doppelsternsystemen, eine hochgradig dynamische Zeitentwicklung aufweisen, und keineswegs quasi-statische Objekte sind, wie es in der Theorie der magnetisch moderierten Sternentstehung vorausgesetzt wird. So muss etwa die Massenanwachsrate junger Sterne starken zeitlichen Schwankungen unterworfen sein, was wiederum wichtige Konsequenzen für die statistische Verteilung der resultierenden Sternmassen hat. Auch auf galaktischen Skalen scheint die Wechselwirkung von Turbulenz und Gravitation maßgeblich. Der Prozess wird hier allerdings noch zusätzlich moduliert durch chemische Prozesse, die die Heizung und Kühlung des Gases bestimmen, und durch die differenzielle Rotation der galaktischen Scheibe. Als wichtigster Mechanismus zur Erzeugung der interstellaren Turbulenz lässt sich die Überlagerung vieler Supernova-Explosionen identifizieren, die das Sterben massiver Sterne begleiten und große Mengen an Energie und Impuls freisetzen. Insgesamt unterstützen die Beobachtungsbefunde auf allen Skalen das Bild der turbulenten, dynamischen Sternentstehung, so wie es in dieser Arbeit gezeichnet wird. / Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that the star formation process is primarily controlled by the interplay between gravity and magnetostatic support, modulated by neutral-ion drift. Recently, however, both observational and numerical work has begun to suggest that supersonic interstellar turbulence rather than magnetic fields controls star formation. <br /> <br /> This review begins with a historical overview of the successes and problems of both the classical dynamical theory of star formation, and the standard theory of magnetostatic support from both observational and theoretical perspectives. We then present the outline of a new paradigm of star formation based on the interplay between supersonic turbulence and self-gravity. Supersonic turbulence can provide support against gravitational collapse on global scales, while at the same time it produces localized density enhancements that allow for collapse on small scales. The efficiency and timescale of stellar birth in Galactic gas clouds strongly depend on the properties of the interstellar turbulent velocity field, with slow, inefficient, isolated star formation being a hallmark of turbulent support, and fast, efficient, clustered star formation occurring in its absence. <br /> <br /> After discussing in detail various theoretical aspects of supersonic turbulence in compressible self-gravitating gaseous media relevant for star forming interstellar clouds, we explore the consequences of the new theory for both local star formation and galactic scale star formation. The theory predicts that individual star-forming cores are likely not quasi-static objects, but dynamically evolving. Accretion onto these objects will vary with time and depend on the properties of the surrounding turbulent flow. This has important consequences for the resulting stellar mass function. Star formation on scales of galaxies as a whole is expected to be controlled by the balance between gravity and turbulence, just like star formation on scales of individual interstellar gas clouds, but may be modulated by additional effects like cooling and differential rotation. The dominant mechanism for driving interstellar turbulence in star-forming regions of galactic disks appears to be supernovae explosions. In the outer disk of our Milky Way or in low-surface brightness galaxies the coupling of rotation to the gas through magnetic fields or gravity may become important.
177

Atmospheric and Interstellar Cosmic Rays Measured With the CAPRICE98 Experiment

Mocchiutti, Emiliano January 2003 (has links)
No description available.
178

How do the large-scale dynamics of galaxy interactions trigger star formation in the Antennae galaxy merger?

Herrera Contreras, Cinthya Natalia 05 November 2012 (has links) (PDF)
The Antennae (22 Mpc) is one of the most well-known mergers in the nearby Universe. Its distance allow us to observe and study the gas at the scales of stellar cluster formation. It is an ideal source to understand how the galaxy dynamics in mergers trigger the formation of stars. Most of the stars in the Antennae are formed in compact and massive stellar clusters, dubbed super-star clusters (SSCs). The most massive (>106 M⊙) and youngest (<6 Myr) SSCs are located in the overlap region, where the two galaxies collide, and are associated with massive (several 108 M⊙) and super-giant (few hundred of pc) molecular complexes (SGMCs). The formation of SSCs must involve a complex interplay of merger-driven gas dynamics, turbulence fed by the galaxy interaction, and dissipation of the kinetic energy of the gas. Within SGMCs, a hierarchy of structures must be produced, including dense and compact concentrations of molecular gas massive enough to form SSCs, pre-cluster clouds (PCCs). For star formation to occur, the mechanical energy of PCCs must be radiated away to allow their self-gravity to locally win over their turbulent gas pressure. Specific tracers of turbulent dissipation are therefore key inputs to test the validity of this theoretical scenario. In my thesis, I studied the Antennae overlap region. My work is based on observations with the SINFONI spectro-imager at the VLT, which includes H2 rovibrational and Brγ line emission, and with ALMA, which includes the CO(3-2) line and dust continuum emission. Both data-sets have the needed sub-arcsecond angular resolution to resolve the scales of SSC formation. The spectral resolutions are enough to resolve motions within SGMCs. Combining CO and H2 line emission is key in my PhD work. I use CO as a tracer of the distribution and kinematics of the molecular gas, and H2 as a tracer of the rate at which the gas mechanical energy is dissipated.My thesis focuses on diverse sources in the Antennae overlap region which trace different stages of star formation: the gathering of mass necessary to form SGMCs, the formation of PCCs within SGMCs and the disruption of a parent cloud by a newly formed SSC. I show that at each stage turbulence plays a key role. I found that the kinetic energy of the galaxies is not thermalized in large scale shocks, it drives the turbulence in the molecular ISM at a much higher level than what is observed in the Milky Way. Near-IR spectral diagnostics show that, outside of SSCs embedded in their parent clouds, the H2 line emission is powered by shocks and traces the dissipation of the gas turbulent kinetic energy. I relate the H2 emission to the loss of kinetic energy required to form gravitationally bound clouds. This interpretation is supported by the discovery of a compact, bright H2 source not associated with any known SSC. It has the largest H2/CO emission ratio and is located where the data show the largest velocity gradient in the interaction region. To our knowledge, this is the first time that an extragalactic source with such characteristics is identified. We would be witnessing the formation of a cloud massive enough to form a SSC. The data also allow us to study the disruption of a parent molecular cloud by an embedded SSC. Its matter is loosely bound and its gravity would be supported by turbulence, which makes it easier for feedback to disrupt the parent cloud. I end my manuscript presenting two projects. I propose to establish additional energy dissipation tracers observable with ALMA, which gives us the high spatial and spectral resolution needed to isolate scales at which clusters form. This is a Cycle 1 proposal accepted in first priority. I also plan to expand my work to other nearby extragalactic sources by investigating the turbulence-driven formation of stars in different extragalactic sources by combining near-IR and submillimeter observations.
179

Atmospheric and Interstellar Cosmic Rays Measured With the CAPRICE98 Experiment

Mocchiutti, Emiliano January 2003 (has links)
No description available.
180

Internal Physical and Chemical Characteristics of Starless Cores on the Brink of Gravitational Collapse

Chitsazzadeh, Shadi 25 August 2014 (has links)
Using various molecular line and continuum emission criteria, we have selected a sample of six isolated, dense concentrations of molecular gas, i.e., “cores”, which are either starless (L694-2, L429, L1517B, and L1689-SMM16) or contain a protostellar Very Low Luminosity Object (VeLLO) and are currently experiencing gravitational collapse (L1014 and L1521F). Studying the molecular emission from dense gas tracers toward this sample of cores will help us gain a more detailed image of the internal physical conditions of dense cores and their evolution. We observed the cores in our sample in NH3 (1,1) and (2,2) emission using the Green Bank Telescope (GBT) and in N2H+ (1−0) emission using the Nobeyama Radio Observatory (NRO). L429 shows the most complicated structure among the cores in our sample. Also, the maxima of molecular line integrated intensities and dust continuum emission toward L429 show a significant offset. The rest of the cores in our sample are roughly round and the morphologies of line integrated intensities follow that of the corresponding continuum emission closely. Cores in our sample have gas kinetic temperatures ∼ 9 − 10 K and therefore show comparable thermal velocity dispersions. L429 and L1517B are, respectively, the most turbulent and most quiescent cores in our sample. Finally, L1521F is the most centrally concentrated core of our sample. L1689-SMM16 is the least previously studied core in our sample and had not yet been probed in molecular emission. Jeans and virial analyses made using updated measurements of core mass and size confirm that L1689-SMM16 is prestellar, i.e., gravitationally bound. It also has accumulated more mass compared to its corresponding Jeans mass in the absence of magnetic fields and therefore is a “super-Jeans” core. The high levels of X(NH3)/X(N2H+) and deuterium fractionation reinforce the idea that the core has not yet formed a protostar. Comparing the physical parameters of the core with those of a Bonnor-Ebert sphere reveals the advanced evolutionary stage of L1689-SMM16 and shows that it might be unstable to collapse. We do not detect any evidence of infall motions toward the core, however. Instead, red asymmetry in the line profiles of HCN (1−0) and HNC (1−0) indicates expansion of the outer layers of the core at a speed of ∼ 0.2 − 0.3 km s−1. For a gravitationally bound core, expansion in the outer layers might indicate that L1689-SMM16 is experiencing oscillations. Radiative transfer modelling of NH3 emission toward L694-2 and L1521F at low and high spatial resolutions show that the less evolved core, L694-2, is best described by relatively constant radial profiles of temperature and fractional NH3 abundance. On the other hand, L1521F, which contains a protostellar VeLLO, is best described by a radial abundance profile that is enhanced toward the core centre and a radial temperature profile that decreases toward the core centre. Comparison of our results with previous studies on L1544, a well-studied starless core, imply that as dense cores evolve and progress toward the moment of collapse, they become more centrally concentrated. As a result, the gas temperatures at their centres decrease, leading to increase in levels of CO depletion factor and increase in NH3 fractional abundance toward the centre. / Graduate

Page generated in 0.032 seconds