1 |
Behaviour of Ips grandicollis (Eichoff) (Coleoptera : Scolytidae)Witanachchi, Jayanthi P. January 1980 (has links) (PDF)
Typescript (photocopy)
|
2 |
Behaviour of Ips grandicollis (Eichoff) (Coleoptera : Scolytidae) / by Jayanthi P. WitanachchiWitanachchi, Jayanthi P. January 1980 (has links)
Typescript (photocopy) / ix, 107 leaves. [3] leaves of plates : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Entomology, 1981
|
3 |
Olfactory recognition and behavioural avoidance of angiosperm non-host volatiles by conifer bark beetles /Zhang, Qing-He. January 1900 (has links) (PDF)
Diss. (sammanfattning) Alnarp : Sveriges lantbruksuniv., 2001. / Härtill 7 uppsatser.
|
4 |
Behaviour of Ips grandicollis (Eichoff) (Coleoptera : Scolytidae) /Witanachchi, Jayanthi P. January 1980 (has links) (PDF)
Thesis (Ph.D.) -- University of Adelaide, Dept. of Entomology, 1981. / Typescript (photocopy).
|
5 |
Studies on two predators and a parasitoid of Ips grandicollis Eichh., the five-spined engraver beetle, in South Australia /Lawson, Simon A. January 1989 (has links) (PDF)
Thesis (M. Ag. Sc.)--University of Adelaide, Dept. of Entomology, Waite Agricultural Research Institute, 1989. / Includes bibliographical references.
|
6 |
Modélisation cellulaire des étapes précoces de la valvulogenèse à partir d'un modèle de cellules souches embryonnaires humaines, et étude de l'implication d'Oct4 dans le phénomène de transition endothélio-mésenchymateuse lors de la formation des coussins endocardiques / Cell modeling of early stages of valvulogenesis from a model of human embryonic stem cells, and study of the involvement of Oct4 in endothelial to mesenchymal transition during endocardial cushions formationHiriart, Emilye 14 January 2016 (has links)
Les cardiopathies représentent la première cause de mortalité dans le monde, près de 30% des décès chaque année sont imputables à ce type de pathologies ; cette incidence a par ailleurs fortement augmentée au cours du siècle dernier (OMS). Les cardiopathies peuvent être classées en plusieurs sous-groupes de maladies cardio-vasculaires en fonction du tissu affecté par la pathologie. On différencie ainsi les maladies affectant les vaisseaux, le muscle cardiaque, le rythme (tissu pacemaker et de conduction) et les maladies des valves cardiaques. Les valvulopathies cardiaques peuvent être causées par des défauts des valves acquis ou innés et représentent près de 30 à 40% des malformations cardiaques recensées. Le pourcentage de patients atteints de valvulopathies augmente avec l’âge du patient, de plus, les valvulopathies représentent la principale cause de morbidité chez l’adulte, et l’enfant dans les pays développés.Ces défauts peuvent être d’origines génétiques, congénitales, toxicologique, ischémiques avec influence de différents facteurs de risques aussi bien génétiques qu’environnementaux, dans certains cas elles peuvent même être provoquées par des médicaments, le cas du Benfluorex (Mediator®) étant probablement le plus connu. Les défauts affectant les valves peuvent avoir de graves conséquences sur le fonctionnement du cœur. Ainsi, en 2008, aux États-Unis, il a été nécessaire de procéder au remplacement de près de 82000 valves cardiaques chez des patients adultes. Si le remplacement de valves cardiaques reste une avancée majeure pour les patients atteints de valvulopathies, l’utilisation de prothèses et de transplants valvulaires présentent néanmoins des limitations, notamment : une absence de croissance des prothèses, l’apparition de thromboses, ainsi que des rejets en cas de transplantation de valves allo-géniques, prélevées sur des donneurs en morts cérébrale. Ainsi, il est nécessaire d’étudier les mécanismes mis en jeu dès le développement embryonnaire, mécanismes qui pourrait avoir un effet délétère à plus ou moins long terme entrainant l’apparition d’une valvulopathie chez l’enfant, le jeune adulte ou chez la personne âgée. Pour cela l’utilisation d’un modèle cellulaire utilisable in vitro serait une avancée remarquable. Ce modèle permettrait à la fois d’élucider un certain nombre de mécanismes biologiques mis en place au cours du développement ou de la pathologie, mais aussi d’espérer la mise en place d’un protocole permettant l’utilisation clinique de cellules autologues reprogrammées pour la thérapie des tissus atteints de valvulopathies voire même une thérapie incluant une réparation endogène. / Heart disease is the leading cause of death worldwide, nearly 30% of deaths each year are attributable to such diseases; this incidence has also greatly increased in the last century (WHO).Heart disease can be classified into several subgroups of cardiovascular disease based on the tissue affected by the pathology. It thus differs diseases affecting vessels, cardiac muscle, rhythm (fabric pacemaker and conduction) and heart valve disease. Heart valve disease can be caused by defects of innate and acquired or valves represent about 30-40% of heart defects identified. The percentage of patients with valvular heart disease patients increases with age of the patient, in addition, valvular heart disease is the leading cause of morbidity in adults and children in developed countries.These defects may be of genetic origin, congenital, toxicological, with ischemic influence of various risk factors both genetic and environmental, in some cases they can even be caused by medications, if the Benfluorex (Mediator®) are probably the most known. The defects in the valves can have serious consequences on the functioning of the heart. In 2008, the United States, it was necessary to proceed with the replacement of nearly 82,000 heart valves in adult patients.If the replacement heart valves remains a major advance for patients with valvular heart disease, the use of prostheses and transplants valves nevertheless have limitations, including: no growth prostheses, the occurrence of thrombosis and releases in cases of allo-transplantation of gene valves taken from brain dead donors. Thus, it is necessary to study the mechanisms involved early embryonic development, mechanisms that could have a deleterious effect more or less long term leading the development of valvular disease in children or young adults in the old person. For this the use of an in vitro cell model used is a remarkable achievement. This model would both elucidate a number of biological mechanisms during development or pathology, but also hope the development of a protocol for the clinical use of autologous cells reprogrammed to the therapy of patients with valvular tissue or even a therapy including an endogenous repair.
|
7 |
Estudo da ação do gene TCL1 na reprogramação de células-tronco de pluripotência induzida (iPS) humanas / Study of TCL1 gene action in the reprogramming of human induced pluripotent stem cell (iPS)Malta, Tathiane Maistro 09 August 2013 (has links)
Células somáticas podem ser reprogramadas para um estádio pluripotente (iPS) adquirindo propriedades semelhantes às células-tronco embrionárias (CTE). O interesse nas células pluripotentes reside em sua capacidade de originar todos os tipos de células somáticas e germinativas, podendo ser aplicadas no tratamento de diversas doenças crônico-degenerativas. Desde sua primeira descrição, diferentes combinações de moléculas já foram utilizadas com sucesso para a geração de iPS. Entretanto, os mecanismos pelos quais a transdução de fatores específicos atuam na reprogramação celular não estão esclarecidos. Este trabalho teve como objetivo induzir a expressão do gene TCL1 em fibroblastos humanos e avaliar a ação deste gene no processo de reprogramação celular. Para tal, foram estabelecidas linhagens celulares de fibroblastos humanos com a expressão estável de TCL1 e essas células foram cultivadas em condições de pluripotência. Após a modificação, as células adquiriram morfologia sugestiva de colônias de células-tronco pluripotentes com marcação positiva para a proteína intracelular NANOG e com níveis de expressão gênica elevados de SOX2, MYC, NANOG, LIN28, TP53, CDH1 e reduzidos de SLUG, quando comparados com fibroblastos virgens. Com intuito de avaliar as alterações transcricionais decorrentes da inserção de TCL1 e do cultivo em condições favorecedoras da pluripotência, foram comparados os perfis de expressão gênica obtidos por microarray de diferentes bibliotecas, incluindo as células modificadas com TCL1, fibroblastos, CTE e iPS. A análise exploratória dos dados mostrou que a introdução de TCL1 modificou o perfil de expressão dos fibroblastos e as células resultantes adquiriram um perfil transcricional que se assemelhou mais com o perfil de células pluripotentes do que com o perfil das células somáticas de origem. A análise diferencial dos dados revelou que vias importantes para a reprogramação celular foram moduladas pela inserção de TCL1, como: Pluripotência de células-tronco embrionárias humanas, Sinalização Wnt/?-catenina e Regulação da transição epitelial-mesenquimal. Os resultados deste trabalho propõem que TCL1 interage com AKT1, aumentando sua atividade, que por sua vez ativa NANOG, acionando a maquinaria de pluripotência e, contribuindo assim, para a reprogramação celular / Somatic cells can be reprogrammed into pluripotent stage (iPS) acquiring properties similar to embryonic stem cells (ESC). The interest in pluripotent stem cells lies in their ability to originate all types of somatic and germ cells, and in their possible application in the treatment of various chronic and degenerative diseases. Since its first description, different combinations of molecules have been successfully used for the generation of iPS. However, the mechanisms by which the transduction of specific factors act on cell reprogramming remain unclear. This study aimed to induce the TCL1 gene expression in human fibroblasts and to evaluate its effect on the cell reprogramming process. We established human fibroblast cell lines with stable expression of TCL1 and cultured these cells under pluripotency conditions. After modification, the cells acquired a pluripotent stem cells-like morphology, stained positive for intracellular protein NANOG, expressed high levels of SOX2, MYC, NANOG, LIN28, TP53, CDH1, and reduced levels of SLUG, as compared to nontransduced fibroblasts. In order to evaluate the transcriptional changes resulting from the insertion of TCL1 and from the culture conditions favoring the pluripotency, we compared the gene expression profiles obtained by microarray among different libraries, including the TCL1 modified cells, fibroblasts, ESC and iPS. Exploratory data analysis showed that the introduction of TCL1 gene modified the expression profile of cells and the resulting fibroblasts acquired a transcriptional profile that resembled more to the profile of pluripotent cells than with the profile of the somatic cells. Differential data analysis revealed that pathways important for cell reprogramming were modulated by TCL1 insertion such as: Human embryonic pluripotent stem cell pathway, Wnt / ?-catenin signaling pathway, and Regulation of epithelial-mesenchymal transition. The results of this study suggest that TCL1 interacts with AKT1, increasing its activity, which in turn activates NANOG, triggering the machinery of pluripotency and thus contribute to cellular reprogramming.
|
8 |
Estudo da ação do gene TCL1 na reprogramação de células-tronco de pluripotência induzida (iPS) humanas / Study of TCL1 gene action in the reprogramming of human induced pluripotent stem cell (iPS)Tathiane Maistro Malta 09 August 2013 (has links)
Células somáticas podem ser reprogramadas para um estádio pluripotente (iPS) adquirindo propriedades semelhantes às células-tronco embrionárias (CTE). O interesse nas células pluripotentes reside em sua capacidade de originar todos os tipos de células somáticas e germinativas, podendo ser aplicadas no tratamento de diversas doenças crônico-degenerativas. Desde sua primeira descrição, diferentes combinações de moléculas já foram utilizadas com sucesso para a geração de iPS. Entretanto, os mecanismos pelos quais a transdução de fatores específicos atuam na reprogramação celular não estão esclarecidos. Este trabalho teve como objetivo induzir a expressão do gene TCL1 em fibroblastos humanos e avaliar a ação deste gene no processo de reprogramação celular. Para tal, foram estabelecidas linhagens celulares de fibroblastos humanos com a expressão estável de TCL1 e essas células foram cultivadas em condições de pluripotência. Após a modificação, as células adquiriram morfologia sugestiva de colônias de células-tronco pluripotentes com marcação positiva para a proteína intracelular NANOG e com níveis de expressão gênica elevados de SOX2, MYC, NANOG, LIN28, TP53, CDH1 e reduzidos de SLUG, quando comparados com fibroblastos virgens. Com intuito de avaliar as alterações transcricionais decorrentes da inserção de TCL1 e do cultivo em condições favorecedoras da pluripotência, foram comparados os perfis de expressão gênica obtidos por microarray de diferentes bibliotecas, incluindo as células modificadas com TCL1, fibroblastos, CTE e iPS. A análise exploratória dos dados mostrou que a introdução de TCL1 modificou o perfil de expressão dos fibroblastos e as células resultantes adquiriram um perfil transcricional que se assemelhou mais com o perfil de células pluripotentes do que com o perfil das células somáticas de origem. A análise diferencial dos dados revelou que vias importantes para a reprogramação celular foram moduladas pela inserção de TCL1, como: Pluripotência de células-tronco embrionárias humanas, Sinalização Wnt/?-catenina e Regulação da transição epitelial-mesenquimal. Os resultados deste trabalho propõem que TCL1 interage com AKT1, aumentando sua atividade, que por sua vez ativa NANOG, acionando a maquinaria de pluripotência e, contribuindo assim, para a reprogramação celular / Somatic cells can be reprogrammed into pluripotent stage (iPS) acquiring properties similar to embryonic stem cells (ESC). The interest in pluripotent stem cells lies in their ability to originate all types of somatic and germ cells, and in their possible application in the treatment of various chronic and degenerative diseases. Since its first description, different combinations of molecules have been successfully used for the generation of iPS. However, the mechanisms by which the transduction of specific factors act on cell reprogramming remain unclear. This study aimed to induce the TCL1 gene expression in human fibroblasts and to evaluate its effect on the cell reprogramming process. We established human fibroblast cell lines with stable expression of TCL1 and cultured these cells under pluripotency conditions. After modification, the cells acquired a pluripotent stem cells-like morphology, stained positive for intracellular protein NANOG, expressed high levels of SOX2, MYC, NANOG, LIN28, TP53, CDH1, and reduced levels of SLUG, as compared to nontransduced fibroblasts. In order to evaluate the transcriptional changes resulting from the insertion of TCL1 and from the culture conditions favoring the pluripotency, we compared the gene expression profiles obtained by microarray among different libraries, including the TCL1 modified cells, fibroblasts, ESC and iPS. Exploratory data analysis showed that the introduction of TCL1 gene modified the expression profile of cells and the resulting fibroblasts acquired a transcriptional profile that resembled more to the profile of pluripotent cells than with the profile of the somatic cells. Differential data analysis revealed that pathways important for cell reprogramming were modulated by TCL1 insertion such as: Human embryonic pluripotent stem cell pathway, Wnt / ?-catenin signaling pathway, and Regulation of epithelial-mesenchymal transition. The results of this study suggest that TCL1 interacts with AKT1, increasing its activity, which in turn activates NANOG, triggering the machinery of pluripotency and thus contribute to cellular reprogramming.
|
9 |
Modélisation de l'épithélium bronchique humain par la technologie des cellules souches pluripotentes induites (iPS) / Modelling human bronchial epithelium by induced pluripotent stem cell (iPS) technology.Sansac, Caroline 18 October 2016 (has links)
Les cellules souches pluripotentes (CSP) incluent les cellules souches embryonnaires (ES) et les celles souches pluripotentes induites (iPS). Elles sont définies par deux propriétés fondamentales : l’auto-renouvellement et la capacité à se différencier dans tous les types cellulaires. Les ES sont dérivées de la masse cellulaire de l’embryon. Elles soulèvent l’intérêt de la communauté scientifique du fait de leur capacité à générer tous les tissus. Il s’agit d’un outil biotechnologique majeur dont les applications thérapeutiques et pharmacologiques comporteront notamment la médecine régénératrice, la modélisation in vitro de maladies humaines et le criblage de candidat-médicaments. Cependant l’utilisation d’embryons humains pour générer les ES soulève des problèmes éthiques. Les iPS contournent ces difficultés car elles sont dérivées de cellules somatiques différenciées. En effet, S. Yamanaka, qui a reçu le prix Nobel en 2012, a découvert en 2006 une technique simple de reprogrammation cellulaire. L’expression transitoire de quatre gènes (OCT4, SOX2, c-MYC and KLF4) est suffisante pour reprogrammer des fibroblastes murins en iPS. Ces cellules iPS ont la même morphologie et les mêmes propriétés que les cellules ES. L’année suivante, S. Yamanaka a appliqué avec succès son cocktail à des fibroblastes humains pour produire des iPS humaines (hiPS). Les hiPS peuvent également dépasser les problèmes immunologiques soulevés par l’utilisation d’ES dans la thérapie cellulaire, par le simple fait que les hiPS pourront être dérivées du patient à traiter. De plus, parce qu’il est possible de choisir les cellules du donneur à reprogrammer selon son génotype, il est plus facile de modéliser des maladies génétiques à partir d’hiPS que d’ES. Enfin, d’un point de vue pharmaceutique, les hiPS peuvent fournir une plateforme quasi-infinie pour le criblage de molécules afin de traiter diverses pathologies. Le but de mon projet de recherche est l’utilisation de la technologie hiPS afin de modéliser le développement de l’épithélium bronchique. Premièrement, in vivo, des tératomes ont été générés après injection d’hiPS dans des souris immunodéficientes. Les tératomes démontrent la capacité de nos hiPS à se différencier en épithélium bronchique. Secondairement, in vitro, reproduire le développement embryonnaire et fœtal permet d’offrir une méthode simple pour modéliser l’épithélium bronchique dans un puits. Cette technologie ouvre la voie vers de nombreuses recherches, du criblage de molécules à la production de cellules souches pour réparer l’épithélium bronchique, et in fine à la promotion de nouveaux traitements pharmacologiques ou de thérapie innovante pour les maladies respiratoires. / Pluripotent stem cells (PSC) include embryonic stem cells (ES) and induced pluripotent stem cells (iPS). They are defined by two fundamental properties: self-renewal and the capacity to differentiate into all cell types. ES cells are derived from the inner cell mass of embryos. They arouse the interest of the scientific community in particular for their ability to generate all tissues. They provide major therapeutic and pharmacological applications, including regenerative medicine, in vitro modelling of human diseases and molecular screening. However, the use of human blastocysts to generate ES cells raises many ethical problems. iPS circumvent these ethical issues as they can be derived from differentiated somatic tissues. Indeed, S. Yamanaka, Nobel Prize in 2012, discovered in 2006 a simple technique of cellular reprogramming. The transient expression of four genes (OCT4, SOX2, c-MYC and KLF4) is sufficient to reprogram mouse fibroblasts into iPS. These iPS cells have the same morphology and the same properties than ES cells. The following year, S. Yamanaka applied successfully his cocktail to human fibroblasts to produce human iPS (hiPS). hiPS may also overcome immunological problems raised by the use of ES cell for cellular therapy, as hiPS can be derived from the patient to be treated. In addition, it is easier to model genetic diseases from hiPS than ES, because it is possible to choose the donor cells to reprogram according to its genotype. Finally, from a pharmacological point of view, hiPS can provide a broad platform of molecular screening to treat various diseases. The aim of my research project is to use the hiPS technology to model the development of bronchial epithelium. First, in vivo, teratomas were formed by the injection of hiPS into immunodeficient mice. Teratomas highlight the ability of differentiation of our hiPS into bronchial epithelium. Second, in vitro, reproducing embryonic and foetal bronchial development provides a way to model bronchial epithelium in a dish.These techniques open the door to many potential research avenues from screening small molecules to engineering stem cells to repair bronchial epithelium, and will in fine promote new pharmacologic or cell-based treatments for respiratory diseases.
|
10 |
The biology, behaviour and chemical control of Ips grandicollis Eichh in pine slash /Bungey, Roger Saunders. January 1966 (has links) (PDF)
Thesis (M. Ag. Sci.)--University of Adelaide, Dept. of Entomology, 1966. / Includes bibliographical references.
|
Page generated in 0.0276 seconds