11 |
Uma abordagem sobre a desigualdade isoperimétrica para o Ensino MédioOliveira, Erik David Perozini de January 2016 (has links)
Orientador: Prof. Dr. Márcio Fabiano da Silva / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016.
|
12 |
Optimal transport, free boundary regularity, and stability results for geometric and functional inequalitiesIndrei, Emanuel Gabriel 01 July 2013 (has links)
We investigate stability for certain geometric and functional inequalities and address the regularity of the free boundary for a problem arising in optimal transport theory. More specifically, stability estimates are obtained for the relative isoperimetric inequality inside convex cones and the Gaussian log-Sobolev inequality for a two parameter family of functions. Thereafter, away from a ``small" singular set, local C^{1,\alpha} regularity of the free boundary is achieved in the optimal partial transport problem. Furthermore, a technique is developed and implemented for estimating the Hausdorff dimension of the singular set. We conclude with a corresponding regularity theory on Riemannian manifolds. / text
|
13 |
Weighted inequalities and properties of operators and embeddings on function spaces / Weighted inequalities and properties of operators and embeddings on function spacesSlavíková, Lenka January 2016 (has links)
The present thesis is devoted to the study of various properties of Banach func- tion spaces, with a particular emphasis on applications in the theory of Sobolev spaces and in harmonic analysis. The thesis consists of four papers. In the first one we investigate higher-order embeddings of Sobolev-type spaces built upon rearrangement-invariant Banach function spaces. In particular, we show that optimal higher-order Sobolev embeddings follow from isoperimetric inequal- ities. In the second paper we focus on the question when the above-mentioned Sobolev-type space is a Banach algebra with respect to a pointwise multiplica- tion of functions. An embedding of the Sobolev space into the space of essentially bounded functions is proved to be the answer to this question in several standard as well as nonstandard situations. The third paper is devoted to the problem of validity of the Lebesgue differentiation theorem in the context of rearrangement- invariant Banach function spaces. We provide a necessary and sufficient condition for the validity of this theorem given in terms of concavity of certain functional depending on the norm in question and we find also alternative characterizations expressed in terms of properties of a maximal operator related to the norm. The object of the final paper is the boundedness of the...
|
14 |
Mínimos locais de funcionais com dependência especial via Γ convergência: com e sem vínculoBiesdorf, João 30 May 2011 (has links)
Made available in DSpace on 2016-06-02T20:27:39Z (GMT). No. of bitstreams: 1
3744.pdf: 1323892 bytes, checksum: 71a7a7180d61db167b8cbec4db2bbe8b (MD5)
Previous issue date: 2011-05-30 / Universidade Federal de Sao Carlos / We address the question of existence of stationary stable solutions to a class of reaction-diffusion equations with spatial dependence in 2 and 3-dimensional bounded domains. The approach consists of proving the existence of local minimizer of the corres-ponding energy functional. For existence, it was enough to give sufficient conditions on the diffusion coefficient and on the reaction term to ensure the existence of isolated mi¬nima of the Γlimit functional of the energy functional family. In the second part we take the techniques developed in the first part to minimize functional in 2 and 3-dimensional rectangles, with and without constraint, solving in a more general form this problem, which was originaly proposed in 1989 by Robert Kohn and Peter Sternberg. / Na primeira parte deste trabalho, abordamos a existência de soluções estacioná-rias estáveis para uma classe de equações de reação-difusão com dependência espacial em domínios limitados 2 e 3-dimensionais. Esta abordagem foi feita via existência de míni¬mos locais dos funcionais de energia correspondentes. Para tal, foi suficiente encontrar condições no coeficiente de difusão e no termo de reação que garantam existência de míni¬mos isolados do funcional Γlimite da família de funcionais de energia. Na segunda parte, aproveitamos as técnicas desenvolvidas na primeira parte para minimizar funcionais em retângulos e paralelepípedos, com e sem vínculo, resolvendo de forma bem mais geral este problema, originalmente proposto em 1989 por Robert Kohn e Peter Sternberg.
|
15 |
Topics in Convex Geometry and Phenomena in High DimensionYe, Deping January 2009 (has links)
No description available.
|
Page generated in 0.0289 seconds