1 |
An Assessment of the Attention Demand Associated with the Processing of Information for In-Vehicle Information Systems (IVIS)Gallagher, John Paul 04 May 2001 (has links)
Technological interventions are being considered to alleviate congestion and to improve the quality of driving on our nation's highways. These new technology interventions will be capable of increasing the amount of information provided to the driver; therefore, steps must be taken to ensure they do not require a high attention demand. (Limited attention resources can be diverted from the primary task of driving to a secondary in-vehicle task). The attention demand required as part of the process of extracting information has been studied relatively extensively.
However, the processing required to make complex decisions is not well understood and provides cause for concern. This study investigated the attention demand required to perform several types of tasks, such as selecting a route, selecting the cheapest route, and selecting the fastest route. The three objectives of this study were: 1) To investigate driver performance during IVIS tasks that required additional processing of information after the extraction of information from a visual display. 2) To develop a method for evaluating driver performance with regard to safety. This task was accomplished by performing an extensive review of the literature, and developing two composite measures. 3) To provide descriptive data on the proportion of drivers who exceeded a threshold of driver performance for each of the different IVIS tasks.
An instrumented vehicle, equipped with cameras and sensors, was used to investigate on-road driver behavior on a four-lane divided road with good visibility. A confederate vehicle was driven in front of the instrumented vehicle to create a vehicle following situation. Thirty-six drivers participated in this study. Age, presentation format, information density, and type of task were the independent variables used in this study.
Results from this study indicate that a high proportion of drivers' will have substantially degraded performance performing IVIS tasks such as selecting a route or a hotel from several possibilities. Findings also indicate that tasks involving computations, such as selecting the quickest or cheapest route, require a high attention demand and consequently should not be performed by a driver when the vehicle is in motion. In addition, text-based messages in paragraph format should not be presented to the driver while the vehicle is in motion. The graphic icon format should be utilized for route planning tasks. / Ph. D.
|
2 |
Auditory-Based Supplemental Information Processing Demand Effects on Driving PerformanceBiever, Wayne Joseph 02 January 2003 (has links)
Thirty-six drivers of both genders from three different age groups performed auditory cognitive tasks while driving an instrumented vehicle. The tasks were of two types. The first type of task was the selection of a driving route from a list presented as a recorded sound. These tasks represented the use of In-Vehicle Information Systems (IVIS). The second type of task consisted of a conversation like series of questions designed to replicate the use of a cellular telephone while driving. The IVIS tasks consisted of two levels of information density (short-term memory load) and four element types (complexity levels) including listening, interpretation, planning, and computation. The effects of age, information density, and element type on driving performance were assessed using a composite set of performance measures. Primary measures of driving performance included lateral tracking, longitudinal control and eye glances. Secondary task performance was assessed by task completion time, skipped tasks and task errors. Additionally, subjective assessment was done using a situational awareness probe question and a modified NASA-TLX question set.
Results showed that drivers demonstrated a general decrease in their ability to maintain their lateral position with increased task complexity. Additionally, speed and following distance were less stable during tasks. During tasks, drivers glanced less at their mirrors and instruments and left their lane more often than during baseline driving periods. Even during difficult tasks, drivers had high self-confidence in their awareness of surroundings.
One result of particular interest was an increase in lane deviations and headway variance coupled with increased forward eye glance durations. It is believed that this is evidence of a condition called "Cognitive Capture" in which a driver, though looking more extensively at the forward roadway, is having difficulty tracking the lead vehicle and lane position. High cognitive load is causing the driver to disregard or shed visual information to allow processing of auditory task-related information.
Another result of concern is the inability of drivers to assess their own impairment while performing in vehicle tasks. During tasks drivers demonstrated reduced scanning of mirrors and vehicle instrumentation. This clearly demonstrates reduced situational awareness. Additionally, during tasks lane tracking and headway maintenance performance decreased as well. However, during all tasks drivers assessed their workload higher than baseline driving even though they rated it near the bottom of the scale. Also, drivers perceived no decrease in their situational awareness.
The results of this study show that driving performance can be negatively impacted by even fairly simple cognitive tasks while a driver is looking at the road with their hands on the wheel. Even while viewing the road, a driver may perform an auditory task and be cognitively overloaded to the point of safety concerns. An additional concern is that drivers underestimate the degree of their cognitive load and its impact on their driving performance. / Master of Science
|
3 |
Ready, set, regenerate! : A design study about affecting driver behaviours through gamification elements. / Ready, set, regenerate! : A design study about affecting driver behaviours through gamification elements.Qvist, Albin, Johansson Subiabre, Philip January 2023 (has links)
The automotive industry plays a significant role in global CO2 emissions. A transition towards electric vehicles is part of the solution to lower CO2 emissions. While electric vehicles are beneficial from an environmental standpoint, it generates new challenges and technology for the driver to adapt to, emphasising the importance of human interaction. A possible solution to affect drivers to adopt new behaviours is using Gamification inIn-vehicle Information Systems. This study implies that drivers do not fully see the potential of regenerative braking to extend the vehicle's range while contributing to safer and more predictable driving. Thus, this thesis explores the implementation of gamification in a vehicle context by using a prototype in a vehicle simulator environment to observe whether it affects driver behaviours to increase regenerative braking usage. This study uses a design study method with a qualitative research approach resulting in a high-fidelity prototype developed through an iterative design process. The prototype mechanics originates from the M-PM-O framework, found through an in-depth literature study. The mechanics are designed into gamification elements using established design principles for In-vehicleInformation Systems. Further, the prototype was evaluated using Volvo Cars vehicle simulators. The results demonstrated that gamification in a vehicle context is possible and that the prototype affected driver behaviours to increase regenerative braking usage. Through the analysis and discussion, four design guidelines emerged for the design of gamification elements in IVIS. However, the study also raises questions regarding the general feasibility of incorporation. Overall, this study opens for further studies regarding gamification's safety and long-term effects in a vehicle context. / Fordonsindustrin spelar en betydande roll i de globala CO2 utsläppen, ochen övergång till elektriska fordon har identifierats som en del av lösningenför att minska utsläppen. Även om elektriska fordon är fördelaktiga ur ettmiljöperspektiv, ställer de nya krav på förare och tekniken i fordon, vilketökar vikten av mänsklig interaktion. För att uppmuntra förare att anta nyabeteenden mer hållbara körbeetenden har spelifiering identifierats som enmöjlig lösning i bilens informationssystem. Studien antyder att bilförare inteser potentialen i regenerativ bromsning för att öka räckvidden i bilensamtidigt som den främjar säkrare och mer förutsägbart körande. Syftet meddenna studien är att utforska spelifiering element i bilensinformationssystem genom att utveckla och testa en prototyp i enbilsimulator för att undersöka om den kan stödja förarbeteenden att ökaregenerativ bromsanvändning. Studien använder sig utav en designstudiemetod med en kvalitativ forskningsansats som resulterar i en högtdetaljerad prototyp utvecklad genom en iterativ designprocess. I endjupgående litteraturstudie identifieras tre spelifiering element som användsi studien. Spelifiering elementen designas med hjälp av etableradedesignprinciper för bilinformationssystem. Vidare utvärderades prototypen i Volvo Cars simulatormiljö. Resultatenindikerade att spelifiering i bilens informationssystem kan stödjaförarbeteenden att öka regenerativ bromsanvändning. Genom analys ochdiskussion uppdagades tre design riktlinjer för designen av spelifieringelement i bilens informationssystem. Överlag, öppnar studien för vidarestudier gällande spelifierings säkerhet och långtidseffekter i en bilkontext.
|
4 |
Protoporphyrin IX Fluorescence for Enhanced Photodynamic Diagnosis and Photodynamic Therapy in Murine Models of Skin and Breast CancerRollakanti, Kishore Reddy 14 May 2015 (has links)
No description available.
|
Page generated in 0.0291 seconds