• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 7
  • 5
  • 2
  • Tagged with
  • 55
  • 25
  • 17
  • 17
  • 15
  • 12
  • 11
  • 10
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

High-frequency Sequences within the Lower Mississippian Allensville Member, Logan Formation, South-central Ohio

Klopfenstein, Trey 01 October 2018 (has links)
No description available.
52

Using Ichnology and Sedimentology to Determine Paleoenvironmental and Paleoecological Conditions of a Shallow-Water, Marine Depositional Environment: Case Studies from the Pennsylvanian Ames Limestone and Modern Holothurians

Smilek, Krista R. 21 September 2009 (has links)
No description available.
53

SEDIMENTOLOGY AND ICHNOLOGY OF LATE CAMBRIAN TO EARLY ORDOVICIAN SKOLITHOS SANDSTONE IN THE DEADWOOD FORMATION, NORTHERN BLACK HILLS, SOUTH DAKOTA, AND SOUTHEASTERN BEAR LODGE MOUNTAINS, WYOMING

Sokoloski, William P. 09 June 2005 (has links)
No description available.
54

Ichnology, depositional dynamics and sequence stratigraphy of the Plio-Pleistocene Orinoco Delta: Mayaro and Morne L’Enfer formations, southern Trinidad

2015 November 1900 (has links)
During the Late Pliocene and early Pleistocene, when the paleo-Orinoco delta system transited over the Amacuro Shelf and reached the paleo-shelf-break along the southeastern shoreline of Trinidad. At this time onwards, the shelf-edge delta clinoforms developed further eastward. These deltaic clastic wedges serve as the unique analog in the geological record for an accommodation-driven inner-shelf and shelf-edge delta, developed at an oblique foreland tectonic setting situated at a tropical-equatorial paleogeographic setting. These deposits were influenced by strong Atlantic longshore current, tropical storms, and phytodetrital pulses, and with an exceptionally high sediment accumulation rates. These four aspects make the clastic wedges unique candidates for sedimentological, ichnological, and stratigraphic investigation. The primary objectives of this thesis are to: (a) collect, analyze, and integrate outcrop data on lithofacies, trace fossils, and discontinuity surfaces into a comprehensive depositional and ichnological model for the first growth-fault-guided shelf-marginal pulse of the paleo-Orinoco delta, as recorded in the Mayaro Formation outcrops in southeast Trinidad; and (b) deduce the dominant sedimentary processes during the across shelf transit and their impacts on the benthic infauna as preserved in the Morne L’Enfer Formation outcrops of southwest Trinidad, which are possibly slightly older than the Mayaro Formation. The basal interval of the Morne L’Enfer Formation has specifically been investigated for this purpose, where the deltaic clastic wedges are preserved directly above shelf deposits. The entire Mayaro Formation megasequence is categorized into deposits belonging to twelve different subenvironments based on lithofacies associations and ichnological characteristics. Ichnological evidence indicates that the shelf-edge deltas are one of the most extreme marine environments for benthic metazoans to colonize. However, the combinations and ranking of stress factors affecting the colonizing fauna are diverse and distinct in every individual subenvironment indicating the relative dominances of river-influence, waves, and/or sediment-gravity-flows vis-à-vis slope instability. Due to variations in stress factors, the megasequence also displays dual ichnologic and sedimentologic properties of both the shelf-edge delta lobe(s) and the outer shelf delta lobe(s). A minor transient tidal influence can only be observed in the architectural elements, e.g. elongated interbar embayment and interlobe prodeltaic depocentres, which control topography and enhance tidal effect. Discovery of an unusual monospecific Glossifungites Ichnofacies along an incision surface in the midst of the Mayaro Formation succession enabled a substantial overhaul of the earlier understanding of the formation in terms of its depositional model and stacking pattern. The surface has been re-identified as a canyon/gully cut at the shelf-edge, which possibly acted as a conduit for (a) the mass movements and for (b) the coarse clastic (mostly silt to medium-grained sand) sediment transfer to deep marine settings. The monospecific nature of the Glossifungites Ichnofacies suite indicates that the incision surface was under substantial ecological stresses for the colonizing infauna. The stresses might have arisen from slope instability of the steep canyon/gully walls, mass movements above the incision surface, elevated water turbulence, and lowered salinity from river influx. Five different facies tracts have been identified within the canyon/gully-fill, which crosscuts the shelf-edge delta-front. The facies tracts are dominated by different types of sediment-gravity flow deposits, which are systematically stacked and are almost devoid of trace fossils due to rapid sedimentation rates and slope instability. They are also strikingly different from the surrounding deltaic facies. A high-frequency sequence stratigraphic model involving the influence of growth-fault tectonics on the relative sea-level curve has been invoked to explain the incision of the canyon/gully and its sequential filling processes. On the other hand, the transition from the open shelf to inner-shelf deltaic condition as displayed by the basal members of the Morne L’Enfer Formation is strongly dominated by evidences of river influence with the transient background action of fair-weather waves and storm waves. A peculiar pattern of disappearance of trace fossils produced by irregular sea-urchins highlight that the river influence was quite strong not only at the sediment-water interface but also in the water-column, which affected invertebrate larvae. The initial progradation of the clastic wedge on the shelf was dominated by hyperpycnal flows and waves in contrast to tidal domination in the younger members of the formation.
55

Faciès, architecture et dynamique d’un système margino-littoral tidal : exemple de la Formation du Dur At Talah (Eocène supérieur, Bassin de Syrte, Libye) / Facies, architecture and dynamics of a tidal nearshore system : example of the Dur At Talah Formation (Upper Eocene, Sirt Basin, Libya)

Pelletier, Jonathan 30 October 2012 (has links)
Ce manuscrit de thèse propose la première étude sédimentologique exhaustive de l’escarpement du Dur At Talah (150 km de long sur 120 m de hauteur). Ce dernier affleure dans la dépression d’Abu Tumayam, dans la partie méridionale du Bassin de Syrte (Libye). La Formation du Dur At Talah offre une séquence sédimentaire régressive (au 2nd ordre), allant de faciès marins peu profonds à des faciès fluviatiles, datée de l’Eocène supérieur. Les exceptionnelles conditions d'affleurement ont permis une analyse sédimentologique approfondie (lithofaciès, ichnofaciès, géométries et découpage séquentiel) conduisant à une caractérisation multiscalaire d'un système margino-littoral dominé par la dynamique tidale. Parmi les résultats saillants de cette étude figure l'identification de deux processus sédimentaires : la progradation signée par des structures clinoformes et l’accrétion latérale caractérisée par des stratifications hétérolithiques inclinées (IHS). Dès lors, plusieurs corps sédimentaires se distinguent sans ambiguïté tel que les barres d’embouchure hétérolithiques et les barres de méandres de chenaux tidaux. L'auscultation de ces grands corps sédimentaires permet alors d'en définir les critères de reconnaissance et le contexte séquentiel de mise en place, mais aussi d'en contraindre le potentiel réservoir. / This manuscript provides the first exhaustive sedimentological study of the Dur At Talah escarpment (≈120 m high and ≈150 km length). This latter is exposed in the Abu Tumayam Trough, in the southern Sirt Basin (Libya). The Dur At Talah Formation forms a 2nd order regressive sequence, from shallow marine to fluviatile deposits, dated as upper Eocene. This exceptional outcrop allows an extensive and detailed sedimentological analysis (lithofaciès, ichnofaciès, geometries and sequence stratigraphy) leading to a multi-scale characterization of nearshore to paralic environments dominated by tidal dynamic. Among outstanding results, two sedimentary processes have been recognized and characterized: the progradation is expressed by large-scale clinoform structures and the lateral accretion is characterized by inclined heterolithic stratifications (IHS). Several sedimentary bodies are, thus, unequivocally distinguishable such as heterolithic mouth-bars and tidal channel point-bars. Thorough analysis of these sedimentary bodies allows to define diagnostic criteria to recognize them. They can be replaced in a consistent stratigraphic framework explaining their architecture and their vertical evolution in order to be used as reservoir analog.

Page generated in 0.0434 seconds