• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The petrography and distribution of some calcite sea hardgrounds

Kenyon-Roberts, Stephen M. January 1995 (has links)
No description available.
2

Diagenesis and Sequence Stratigraphy : Predictive Models for Reservoir Quality Evolution of Fluvial and Glaciogenic and Non-glaciogenic, Paralic Deposits

Kalefa, Mohamed January 2005 (has links)
<p>Development of a predictive model for the distribution of diagenetic alterations and related evolution of reservoir quality of sandstones was achieved by integrating the knowledge of diagenesis to sequence stratigraphy. This approach allows a better elucidation of the distribution of eogenetic alterations within sequence stratigraphy, because changes in the relative sea level induce changes to: (i) pore water chemistry, (ii) residence time of sediments under certain near-surface geochemical conditions, (iii) variations in the detrital composition, and (iv) amounts and type of organic matter.</p><p>This thesis revealed that eogenetic alterations, which are linked to sequence stratigraphy and have an impact on reservoir quality evolution, include formation of: (i) pseudomatrix and mechanically infiltrated clays in fluvial sandstones of the lowstand and highstand systems tracts (LST and HST, respectively), (ii) kaolinite in tide-dominated deltaic and foreshore-shoreface sandstones of HST, Gilbert-type deltaic sandstones of LST and fluvial deltaic sandstones of LST, (iii) kaolinite and mechanically infiltrated clays in sandstones lying below sequence boundary, (iv) K-feldspar overgrowths in fluvial deltaic LST, (v) glaucony towards the top of fluvial deltaic LST immediately below and at transgressive surface (TS) and in foreshore and shoreface transgressive systems tracts (TST) below parasequence boundaries (PB) and maximum flooding surface (MFS), (vi) framboidal pyrite and extensive cementation by calcite and dolomite in foreshore and shoreface and tide-dominated deltaic TST, and shoreface and tidal flat HST bioclastic-rich arenites particularly in the vicinity of PB, TS and MFS, (vii) pervasive cementation by iron oxide in shoreface-offshore and shoreface sandstones of TST immediately below the MFS, (viii) zeolites and palygroskite in shoreface sandstones of TST and HST, particularly above PB, and (ix) cementation by siderite in Gilbert-type deltaic sandstones of LST, tide-dominated deltaic and foreshore-shoreface sandstones of HST and in tide-dominated deltaic sandstones of TST, particularly at MFS. Moreover, this thesis revealed that the distribution of eogenetic alterations strongly control, and thus provide information for constraining the distribution patterns of mesogenetic alterations, such as illitization of mechanically infiltrated clays and dickitization of kaolinite, and hence of related reservoir quality evolution of sandstones during progressive burial.</p>
3

Impact of Diagenetic Alterations on Reservoir Quality and Heterogeneity of Paralic and Shallow Marine Sandstones : Links to Depositional Facies and Sequence Stratigraphy

Al-Ramadan, Khalid January 2006 (has links)
<p>This thesis constrains the distribution of diagenetic alterations and their impact on reservoir-quality and heterogeneity evolution pathways in relation to depositional environments and sequence stratigraphy (systems tracts and key sequence stratigraphic surfaces) of four selected paralic and shallow marine siliciclastic successions. </p><p>Typical eogenetic alterations encountered include the dissolution and kaolinitization of framework silicates, which are closely associated to shoreface facies of forced regressive systems tract (FRWST), lowstand systems tract (LST), upper part of the highstand systems tract (HST), and below the sequence boundary (SB). These alterations are attributed to incursion of meteoric water owing to rapid and considerable fall in the relative sea level. Extensive carbonate cementation is most evident below marine and maximum flooding surfaces (MFS), whereas dissolution of carbonate cement and detrital dolomite occur in LST, HST and below SB. Parameters controlling the patterns and texture (microcrystalline vs. poikilotopic) of calcite cement have been constrained within sequence stratigraphic framework of the sandstones. Coarse crystalline to poikilotopic calcite textures of meteoric water origin are thus closely linked to the FRWST, LST and upper part of the HST sandstones and occur mainly as stratabound concretions, whereas microcrystalline calcite, which was precipitated from marine porewaters, occurs as continuously cemented layers in the transgressive systems tract (TST) and lower part of the HST sandstones.</p><p>Eogenetic alterations impose, in turn, profound control on the distribution pattern of mesogenetic alterations, and hence on reservoir quality evolution (destruction vs. preservation) pathways of sandstones. Eogenetic infiltrated clays, which occur in the tidal estuarine TST and HST sandstones, have helped preserving porosity in deeply buried sandstone reservoirs (≈ 5 km) through inhibition of extensive cementation by quartz overgrowths. Other essential findings of this thesis include deciphering the control on the formation of authigenic illite and chlorite by ultra-thin (≤ 1 µm thick), grain-coating clay mineral substrate. </p>
4

Impact of Diagenetic Alterations on Reservoir Quality and Heterogeneity of Paralic and Shallow Marine Sandstones : Links to Depositional Facies and Sequence Stratigraphy

Al-Ramadan, Khalid January 2006 (has links)
This thesis constrains the distribution of diagenetic alterations and their impact on reservoir-quality and heterogeneity evolution pathways in relation to depositional environments and sequence stratigraphy (systems tracts and key sequence stratigraphic surfaces) of four selected paralic and shallow marine siliciclastic successions. Typical eogenetic alterations encountered include the dissolution and kaolinitization of framework silicates, which are closely associated to shoreface facies of forced regressive systems tract (FRWST), lowstand systems tract (LST), upper part of the highstand systems tract (HST), and below the sequence boundary (SB). These alterations are attributed to incursion of meteoric water owing to rapid and considerable fall in the relative sea level. Extensive carbonate cementation is most evident below marine and maximum flooding surfaces (MFS), whereas dissolution of carbonate cement and detrital dolomite occur in LST, HST and below SB. Parameters controlling the patterns and texture (microcrystalline vs. poikilotopic) of calcite cement have been constrained within sequence stratigraphic framework of the sandstones. Coarse crystalline to poikilotopic calcite textures of meteoric water origin are thus closely linked to the FRWST, LST and upper part of the HST sandstones and occur mainly as stratabound concretions, whereas microcrystalline calcite, which was precipitated from marine porewaters, occurs as continuously cemented layers in the transgressive systems tract (TST) and lower part of the HST sandstones. Eogenetic alterations impose, in turn, profound control on the distribution pattern of mesogenetic alterations, and hence on reservoir quality evolution (destruction vs. preservation) pathways of sandstones. Eogenetic infiltrated clays, which occur in the tidal estuarine TST and HST sandstones, have helped preserving porosity in deeply buried sandstone reservoirs (≈ 5 km) through inhibition of extensive cementation by quartz overgrowths. Other essential findings of this thesis include deciphering the control on the formation of authigenic illite and chlorite by ultra-thin (≤ 1 µm thick), grain-coating clay mineral substrate.
5

Diagenesis and Sequence Stratigraphy : Predictive Models for Reservoir Quality Evolution of Fluvial and Glaciogenic and Non-glaciogenic, Paralic Deposits

Kalefa, Mohamed January 2005 (has links)
Development of a predictive model for the distribution of diagenetic alterations and related evolution of reservoir quality of sandstones was achieved by integrating the knowledge of diagenesis to sequence stratigraphy. This approach allows a better elucidation of the distribution of eogenetic alterations within sequence stratigraphy, because changes in the relative sea level induce changes to: (i) pore water chemistry, (ii) residence time of sediments under certain near-surface geochemical conditions, (iii) variations in the detrital composition, and (iv) amounts and type of organic matter. This thesis revealed that eogenetic alterations, which are linked to sequence stratigraphy and have an impact on reservoir quality evolution, include formation of: (i) pseudomatrix and mechanically infiltrated clays in fluvial sandstones of the lowstand and highstand systems tracts (LST and HST, respectively), (ii) kaolinite in tide-dominated deltaic and foreshore-shoreface sandstones of HST, Gilbert-type deltaic sandstones of LST and fluvial deltaic sandstones of LST, (iii) kaolinite and mechanically infiltrated clays in sandstones lying below sequence boundary, (iv) K-feldspar overgrowths in fluvial deltaic LST, (v) glaucony towards the top of fluvial deltaic LST immediately below and at transgressive surface (TS) and in foreshore and shoreface transgressive systems tracts (TST) below parasequence boundaries (PB) and maximum flooding surface (MFS), (vi) framboidal pyrite and extensive cementation by calcite and dolomite in foreshore and shoreface and tide-dominated deltaic TST, and shoreface and tidal flat HST bioclastic-rich arenites particularly in the vicinity of PB, TS and MFS, (vii) pervasive cementation by iron oxide in shoreface-offshore and shoreface sandstones of TST immediately below the MFS, (viii) zeolites and palygroskite in shoreface sandstones of TST and HST, particularly above PB, and (ix) cementation by siderite in Gilbert-type deltaic sandstones of LST, tide-dominated deltaic and foreshore-shoreface sandstones of HST and in tide-dominated deltaic sandstones of TST, particularly at MFS. Moreover, this thesis revealed that the distribution of eogenetic alterations strongly control, and thus provide information for constraining the distribution patterns of mesogenetic alterations, such as illitization of mechanically infiltrated clays and dickitization of kaolinite, and hence of related reservoir quality evolution of sandstones during progressive burial.
6

Sedimentological re-interpretation of the early cretaceous oil reservoir in the Northern Bredasdorp Basin, offshore South Africa

Asiashu, Mudau January 2015 (has links)
>Magister Scientiae - MSc / This study was aimed at determining the sedimentary environment, its evolution and facies areal distribution of the Upper Shallow Marine (USM, Late Valanginian). The study was conducted in wells E-S1, F-AH4 and E-W1 in the Bredasdorp basin between E-M and F-AH fields, located in a basinwards transect roughly transverse to the palaeocoast. The wells were studied by logging all the cores in detail between the chosen intervals, followed by facies analysis. Each core log was tied with its respective gamma ray and resistivity well logs. The logs were then correlated based on their log signatures, trends and facies interpretation. The Gamma ray logs show a fining-upwards and coarsening-upwards trend (“hour-glass shape”) in E-S1 and F-AH4 while in E-W1 it shows more accommodation space. These trends are believed to have been influenced by relative sea level changes, such as transgression and regression. Facies analysis identified seven facies in the study area: Facies A, B, C, D, E, F and G. Facies A, B and C were interpreted as fair-weather and storm deposits of the offshore-transition zone, shoreface and foreshore respectively. Facies D was considered as lagoonal mud deposits, while Facies E and F were interpreted as tidal channel and tidal bar deposits respectively. Finally Facies G was considered as fluvial channel deposits. The facies inferred that the sedimentary environment of the study area is a wave-dominated estuary or an Island-bar lagoon system. This led to the production of a conceptual model showing the possible locations for the three wells in the Island bar-lagoon system. The conceptual model inferred the previous findings from PGS (1999) report, that the Upper Shallow Marine beds were deposited in a tidal/estuarine to shoreface setting. This model also supports the findings of Magobiyane (2014), which proposed a wave-dominated estuary for the Upper Shallow Marine reservoir between E-M and F-AH fields, located west of the study area.
7

Diagenesis and Reservoir-Quality Evolution of Paralic, Shallow Marine and Fluvio-lacustrine Deposits : Links to Depositional Facies and Sequence Stratigraphy

Hlal, Osama Ahmed January 2008 (has links)
Linking diagenesis to depositional facies and sequence stratigraphy enables better prediction of spatial and temporal distribution of diagenetic alterations, and thus of evolution of reservoir quality in sandstones. This thesis demonstrates that employing this approach is possible because depositional facies and sequence stratigraphy can provide useful information on parameters controlling the near-surface diagenesis, such as changes in: (i) pore-water chemistry, (ii) residence time of sediments under certain geochemical conditions, (iii) detrital composition and proportion of extra- and intra-basinal grains, and (iv) types and amounts of organic matter. Evidence from four case studies enabled the development of conceptual models for distribution of diagenetic alterations and of their impact on evolution of reservoir quality in sandstones deposited in paralic, shallow marine and fluvio-lacustrine environments. Diagenetic alterations that have been constrained within the context of depositional facies and sequence stratigraphy include: (i) carbonate cement (microcrystalline and equant calcite spars dolomite over poikilotopic calcite), pyrite and glaucony are most abundant in progradational braid-delta fan sequences, particularly along the topsets (i.e. maxiumum flooding surface, MFS) and along parasequences boundaries in the deltaic facies of the early highstand systems tract HST, (ii) cementation by coarse spar calcite, dolomite, and the formation of moldic porosity by the dissolution of framework carbonate grains are most abundant in the aggradational fan deltas sequences, (iii) eogenetic kaolinitization of framework silicates is largely restricted to the fluvial and paralic HST sandstones, whereas telogenetic kaolinite may occur in the transgressive systems tract TST sandstones too, (iv) formation of goethite ooids in the TST sediments, (v) formation of glaucony, siderite spherules, and extensive grain-coatings, grain-replacing and ooidal berthierine, more in the TST than in the HST sediments, particularly below the transgressive surface TS and MFS, (vi) cementation by calcite with (δ18OV-PDB = -11.5‰ to -5.4‰) and Fe-dolomite/ankerite (δ18OV-PDB = -10.8‰ to -9.6‰) occurs in both TST and HST sandstones, (vii) syntaxial quartz overgrowths are most extensive in the HST sandstones owing to the presence of incomplete grain-coating berthierine/chlorite, (viii) greater amounts of micro-porosity in the TST sandstones than in the HST sandstones are related to the greater amounts of berthierine/chlorite in the former sandstones, and (ix) chlorite rims around quartz grains retarded the precipitation of quartz overgrowths, and hence prevented a greater loss of primary intergranular porosity in fluvio-lacustrine sandstones. Therefore, constraining the distribution of diagenetic alterations in the contexts of depositional facies and sequence stratigraphic context is a powerful approach to be used in hydrocarbon exploration.
8

Sedimentology, Stratigraphic Evolution and Provenance of the Cambrian – Lower Ordovician Potsdam Group in the Ottawa Embayment and Quebec Basin

Lowe, David January 2016 (has links)
The Cambrian – Lower Ordovician Potsdam Group is a mostly siliciclastic unit that provides important insight into the paleoenvironmental, geologic and tectonic history of Early Paleozoic Laurentia. Nevertheless, in spite of 178 years of study the Potsdam in the Ottawa Embayment and Quebec Basin remains poorly understood. Also poorly understood is how the Potsdam relates with coeval strata regionally. In this work six siliciclastic paleoenvironments are recognized: (a) braided fluvial, (b) ephemeral fluvial, (c) aeolian, (d) coastal sabkha, (e) tide-dominated marine and (f) open-coast tidal flat. Fluvial strata were examined in particular detail and interpreted to consist of two end-member kinds. Braided fluvial deposits are dominated by low-relief bars formed in wide, shallow channels; however where basement structures limited the lateral growth of channels, flows were deeper and bar deposits thicker and higher angle. In contrast, ephemeral fluvial strata are dominated by sheetflood splay sedimentation with rare preservation of scour-filling supercritical bedform strata – all later subjected to aeolian reworking. In the upper Potsdam, alternating ephemeral and braided fluvial strata provide a record of climate change, which, respectively, correlate with documented global cool (arid) and warm (humid) periods during the Late Cambrian and Early Ordovician. Three allounits are recognized in Potsdam strata, recording regional episodes of sedimentation and facilitating correlation with coeval strata throughout eastern North America. These correlations, aided with provenance data from detrital zircons, show that changes in the areal distribution of sediment supply, accommodation and deposition/erosion were principally controlled by episodic reactivation of the Neoproterozoic Ottawa graben, which then periodically modified the stratigraphic expression of the ongoing Sauk transgression. Specifically, episodes of tectonic reactivation occurred during late Early to Middle Cambrian (allounit 1), late Middle to early Late Cambrian (allounits 2 – 3 unconformity), and Earliest Ordovician (allounits 3 – 4 unconformity). The earliest episode is correlated to regional extension of southern Laurentia, whereas the latter two are linked to peri-Laurentian accretion events that triggered reactivation of the Ottawa graben via the Missisquoi oceanic fracture zone.
9

High-frequency Sequences within the Lower Mississippian Allensville Member, Logan Formation, South-central Ohio

Klopfenstein, Trey 01 October 2018 (has links)
No description available.
10

Interaction entre la tectonique salifère et la sédimentation dans des mini-bassins : Exemple de l’Oligo-Miocène du bassin de Sivas, Turquie / Interaction between salt tectonic and sedimentation within salt-related mini-basins : the case of the Oligo-Miocene formations in the Sivas Basin, Turkey

Ribes, Charlotte 11 December 2015 (has links)
L’objectif de cette thèse est d’analyser l’évolution d’une province à mini-bassins salifères, en s’appuyant sur l’étude des variations spatiales et temporelles de faciès, d’épaisseurs ainsi que des géométries développées lors du fluage des évaporites. L’exemple naturel investigué est le bassin de Sivas, situé sur le Plateau central Anatolien en Turquie. Ce bassin d’avant-pays enregistre à l’Oligo-Miocène la formation de nombreux mini-bassins secondaires au-dessus d’un niveau d’évaporites allochtones. A partir d’une cartographie et d’une description détaillées des séries sédimentaires accumulées dans les mini-bassins de Sivas, nous avons pu identifier trois ensembles tectono-sédimentaires cohérents :• la formation Karayün (Oligocène moyen à supérieur), constituée de dépôts de playa-lake, fluviatile en tresse et fluvio-lacustre, interprétée comme proche d’un système fluviatile en distributaires ;• la formation Karacaören (Oligocène supérieur, Miocène inférieur), interprétée comme une série alternante entre une rampe mixte deltaïque et carbonatée, et des dépôts de lagune et de plaine côtière ;• la formation de Benlikaya (Miocène), constituée de dépôts de cônes alluviaux, fluviatiles en tresse et playa-lake, interprétée également comme proche d’un système fluviatile en distributaires.Malgré de nombreuses variations de l’épaisseur et de la succession sédimentaire inter- et intra-bassins, des unités stratigraphiques équivalentes ont pu être déterminées à partir de l’identification de lignes isochrones marquant des changements de tendances. Nous avons montré alors que le système sédimentaire de chacun des mini-bassins est contrôlé au premier ordre par trois facteurs interdépendants, à savoir :• l’accommodation par halocinèse, provoquant la surrection des diapirs et des murs périphériques lors de la subsidence du mini-bassin. Ce fluage des évaporites produit des variations intra-basinales de faciès et d’épaisseurs, associées à des déformations syn-sédimentaires en bordure de mini-bassins. À plus grande échelle, ces objets salifères produisent une compartimentation inter-bassins des environnements de dépôts.• le taux d’accumulation sédimentaire, qui influence la faciologie et l’architecture stratigraphique des dépôts.• l’accommodation régionale, lié à la flexure du bassin, à l’origine du dépôt de série isopaques pouvant recouvrir les diapirs et finalement masquer l’influence salifère.À ces paramètres communs aux provinces salifères, nous ajoutons, l’influence des contraintes tectoniques compressives qui modifient les rétroactions entres ces facteurs. / The aim of this thesis is to investigate the development of a salt-related mini-basin province, based on spatial and temporal changes in the facies assemblages, stratigraphic architecture and thicknesses, as well as stratal structures related to salt movement. The study area is the Sivas Basin, located in the Central Anatolian Plateau of Turkey, which is a foreland basin that records the formation during the Oligo-Miocene of numerous secondary mini-basins on top of an allochthonous evaporite canopy. Through detailed mapping of the Sivas mini-basin province, we provide a new and comprehensive description of the stratigraphic vertical succession including:• the Karayün Fm (Mid to upper Oligocene), comprising playa-lake, fluvial braided and fluvio-lacustrine deposits, and interpreted as a large distributive fluvial system;• the Karacaören Fm (Up. Oligocene to Low. Miocene), comprising two main sub-environments: mixed deltaic and carbonate ramp, alternating with coastal plain and restricted lagoon;• the Benlikaya Fm (Miocene), comprising alluvial fan, fluvial braided and playa-lake deposits interpreted also as a large distributive fluvial system;Within neighbouring minibasins and despite a similar vertical stratigraphic succession, variations are observed in stratigraphic units of equivalent age within and between minibasins. At the first order, we have defined three factors that dictate the pattern of mini-basin filling:• salt-induced accommodation producing local faciologic and stratigraphic thickness changes, and halokinetic structures along mini-basin borders. At larger scale, salt structures result in a compartmentalization of facies between basins.• The sediment supply rate, which affects facies assemblage and stratigraphic architecture.• Tectonically driven regional accommodation attributed to the foreland flexure, inducing the deposition of relatively isopachous series draping and finally obscuring the salt topography.In addition, these three factors are largely influenced by shortening during the evolution of the Sivas fold-and-thrust-belt.

Page generated in 0.0429 seconds