Spelling suggestions: "subject:"ideais dde binômio"" "subject:"ideais dee binômio""
1 |
Ideais coerentes e compatíveis entre espaços de BanachOliveira Ribeiro, Joilson 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:29:17Z (GMT). No. of bitstreams: 2
arquivo7568_1.pdf: 802451 bytes, checksum: 9f8739e889c7801b1ce42de3b8f59ab6 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2011 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho apresentamos uma nova abordagem para avaliar extensões de ideais de
operadores lineares para multi-ideais e ideais de polinômios. Nossa abordagem estende os
conceitos de coerência e compatibilidade de ideais de polinômios. Além disso, mostramos
que o nosso método é capaz de …ltrar as principais extensões multilineares e polinomiais
conhecidas e eliminar possíveis construções arti…ciais.
Estudamos ainda as aplicações multilineares e polinômios quase somantes em todo
ponto, construindo uma norma para este espaço que torna tal classe um ideal de
polinômios/multi-ideal de Banach. Mostramos ainda que esta construção fornece uma
sequência de ideais coerentes e compatíveis
|
2 |
Ideais algebricos de aplicações multilineares e polinômios homogêneos / Algebraic ideals of multilinear mappings and homogeneous polynomialsMoura, Fernanda Ribeiro de 28 May 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The main purpose of this dissertation is the study of ideals of multilinear mappings and
homogeneous polynomials between linear spaces. By an ideal we mean a class that is
stable under the composition with linear operators. First we study multilinear mappings
and spaces of multilinear mappings. We also show how to obtain, from a given multilinear
mapping, other multilinear mappings with degrees of multilinearity greater than, equal
to or smaller than the degree of the original multilinear mapping. Next we study homogeneous
polynomials and spaces of homogeneous polynomials, and we also show how
to obtain, from a given n-homogeneous polynomial, other polynomials with degrees of
homogeneity greater than, equal to or smaller than the degree of the original polynomial.
Next we study ideals of multilinear mappings, or multi-ideals, and ideals of homogeneous
polynomial, or polynomial ideals, giving several examples and presenting methods to generated
multi-ideals and polynomial ideals from a given operator ideal. Finally we dene
and give several examples of coherent multi-ideals and coherent polynomial ideals. / O principal objetivo desta dissertação e estudar os ideais de aplicações multilineares e polinômios homogêneos entre espaços vetoriais. Por um ideal entendemos uma classe de aplicações que e estavel atraves da composição com operadores lineares. Primeiramente estudamos as aplicações multilineares e os espaços de aplicações multilineares. Mostramos tambem como obter, a partir de uma aplicação multilinear dada, outras aplicações com graus de multilinearidade maiores, iguais ou menores que o da aplicação original. Em seguida estudamos os polinômios homogêneos e os espacos de polinômios homogêneos,
e mostramos que, a partir de um polinômio n-homogêneo, tambem podemos construir novos polinômios homogêneos com graus de homogeneidade maiores, iguais ou menores que n. Posteriormente estudamos os ideais de aplicações multilineares, ou multi-ideais,
e os ideais de polinômios homogêneos, exibindo varios exemplos e apresentando metodos para se obter um multi-ideais, ou ideais de polinômios, a partir de ideais de operadores lineares dados. Por m, denimos e exibimos varios exemplos de multi-ideais coerentes e
de ideais coerentes de polinômios. / Mestre em Matemática
|
Page generated in 0.0534 seconds