• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ideais coerentes e compatíveis entre espaços de Banach

Oliveira Ribeiro, Joilson 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:29:17Z (GMT). No. of bitstreams: 2 arquivo7568_1.pdf: 802451 bytes, checksum: 9f8739e889c7801b1ce42de3b8f59ab6 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho apresentamos uma nova abordagem para avaliar extensões de ideais de operadores lineares para multi-ideais e ideais de polinômios. Nossa abordagem estende os conceitos de coerência e compatibilidade de ideais de polinômios. Além disso, mostramos que o nosso método é capaz de …ltrar as principais extensões multilineares e polinomiais conhecidas e eliminar possíveis construções arti…ciais. Estudamos ainda as aplicações multilineares e polinômios quase somantes em todo ponto, construindo uma norma para este espaço que torna tal classe um ideal de polinômios/multi-ideal de Banach. Mostramos ainda que esta construção fornece uma sequência de ideais coerentes e compatíveis
2

Aplicações absolutamente somantes e generalizações do teorema da dominação de Pietsch

Silva dos Santos, Joedson 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:29:09Z (GMT). No. of bitstreams: 2 arquivo6740_1.pdf: 641905 bytes, checksum: a06a944bf7e6ad9617b89be189682141 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho avaliamos varias extensões multilineares do conceito de operadores absolutamente somantes segundo algumas propriedades que consideramos importantes; demonstramos que existem classes maximais e minimais com as propriedades destacadas. Em outra direção, caracterizamos as aplicações arbitrarias não-lineares f : X1 Xn ! Y entre espacos de Banach que satisfazem um teorema de dominac~ao do tipo Pietsch em torno de um ponto arbitrario (a1; :::; an) 2 X1 Xn: Alem disso, demonstramos uma nova versão do Teorema de Dominação de Pietsch, que generaliza abordagens recentes e mostra que o Teorema da Dominação de Pietsch Unificado apresentado em [20] e ainda valido com duas hipoteses a menos
3

Ultraprodutos em espaços de banach e aplicações

Oliveira, Fabrício Vieira 24 April 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-02-02T10:00:56Z No. of bitstreams: 1 fabriciovieiraoliveira.pdf: 1771957 bytes, checksum: 8c6b8d555c008276c082082c55021a5e (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-02-02T11:42:53Z (GMT) No. of bitstreams: 1 fabriciovieiraoliveira.pdf: 1771957 bytes, checksum: 8c6b8d555c008276c082082c55021a5e (MD5) / Made available in DSpace on 2016-02-02T11:42:53Z (GMT). No. of bitstreams: 1 fabriciovieiraoliveira.pdf: 1771957 bytes, checksum: 8c6b8d555c008276c082082c55021a5e (MD5) Previous issue date: 2014-04-24 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O presente trabalho tem por objetivo apresentar aplicações da teoria de ultraprodutos em Análise Funcional em espaços de Banach, especificamente nos problemas de extensão de funções holomorfas, constantes de polarização e ideais de operadores maximais. Também é realizada uma revisão dos conceitos relacionados a topologia, aplicações multilineares, ultrafiltros e ultraprodutos de espaços de Banach. / This is work aims to present a application of the ultraproducts theory in Functional Analysis in Banach spaces, specifically in the problems of extension of holomorphic functions, polarization constants and maximal operator ideals. Also is performed a review of concepts about topology, multilinear maps, ultrafilters and ultraproducts in Banach spaces.
4

Operadores lineares Cohen fortemente somantes

Leite, Fábio da Silva de Siqueira 21 February 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-22T16:03:10Z No. of bitstreams: 1 arquivototal.pdf: 1039820 bytes, checksum: 2e99f469c22f0b9c57e0059499fc3b27 (MD5) / Made available in DSpace on 2017-08-22T16:03:10Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1039820 bytes, checksum: 2e99f469c22f0b9c57e0059499fc3b27 (MD5) Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The goal of our work is to study the class of the Cohen strongly summing operators. Initially, we present basic results from Functional Analysis that are necessary for the development of the text and then we deal with sequence spaces which will be used to de ne and study the classes of operators involved in this work, as necessarily the class of the absolutely summing operators. We also study the sequence space of the Cohen- Khalil strongly (q; p)-summable sequences and the sequence space of the Cohen strongly p-summable sequences, as a particular instance of the former. From this, we de ne the class of the Cohen strongly p-summing operators and the class of the Cohen-Khalil strongly (s; r; p)-summing operators which, under certain conditions, are equivalent. We conclude with a study, from the viewpoint of the operator ideal theory, using the abstract environment created by G. Botelho and J. R. Campos, in order to show that p and Dp are Banach ideals and the relations dual p = Dp and Ddual p = p are valid, where p and p are conjugate indexes. / objetivo de nosso trabalho e estudar a classe dos operadores Cohen fortemente p- somantes. Inicialmente, apresentamos resultados b asicos de An alise Funcional necess arios ao desenvolvimento do texto e, em seguida, tratamos dos espa cos de sequ^encias que ser~ao usados na de ni c~ao e estudo das classes de operadores envolvidas no trabalho, como necessariamente a classe dos operadores absolutamente somantes. Apresentamos tamb em o espa co das sequ^encias Cohen-Khalil fortemente (q; p)-som aveis e o espa co das sequ^encias Cohen fortemente p-som aveis, como caso particular do primeiro. A partir disto, de - nimos a classe dos operadores Cohen fortemente p-somantes e a classe dos operadores Cohen-Khalil fortemente (s; r; p)-somantes que, sob certas condi c~oes, s~ao equivalentes. Conclu mos com um estudo, sob o ponto de vista da teoria dos ideais de operadores, usando o ambiente abstrato criado por G. Botelho e J. R. Campos, para mostrar que p e Dp s~ao ideais de Banach e valem as rela c~oes dual p = Dp e Ddual p = p, onde p e p s~ao ndices conjugados.
5

Ideais algebricos de aplicações multilineares e polinômios homogêneos / Algebraic ideals of multilinear mappings and homogeneous polynomials

Moura, Fernanda Ribeiro de 28 May 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The main purpose of this dissertation is the study of ideals of multilinear mappings and homogeneous polynomials between linear spaces. By an ideal we mean a class that is stable under the composition with linear operators. First we study multilinear mappings and spaces of multilinear mappings. We also show how to obtain, from a given multilinear mapping, other multilinear mappings with degrees of multilinearity greater than, equal to or smaller than the degree of the original multilinear mapping. Next we study homogeneous polynomials and spaces of homogeneous polynomials, and we also show how to obtain, from a given n-homogeneous polynomial, other polynomials with degrees of homogeneity greater than, equal to or smaller than the degree of the original polynomial. Next we study ideals of multilinear mappings, or multi-ideals, and ideals of homogeneous polynomial, or polynomial ideals, giving several examples and presenting methods to generated multi-ideals and polynomial ideals from a given operator ideal. Finally we dene and give several examples of coherent multi-ideals and coherent polynomial ideals. / O principal objetivo desta dissertação e estudar os ideais de aplicações multilineares e polinômios homogêneos entre espaços vetoriais. Por um ideal entendemos uma classe de aplicações que e estavel atraves da composição com operadores lineares. Primeiramente estudamos as aplicações multilineares e os espaços de aplicações multilineares. Mostramos tambem como obter, a partir de uma aplicação multilinear dada, outras aplicações com graus de multilinearidade maiores, iguais ou menores que o da aplicação original. Em seguida estudamos os polinômios homogêneos e os espacos de polinômios homogêneos, e mostramos que, a partir de um polinômio n-homogêneo, tambem podemos construir novos polinômios homogêneos com graus de homogeneidade maiores, iguais ou menores que n. Posteriormente estudamos os ideais de aplicações multilineares, ou multi-ideais, e os ideais de polinômios homogêneos, exibindo varios exemplos e apresentando metodos para se obter um multi-ideais, ou ideais de polinômios, a partir de ideais de operadores lineares dados. Por m, denimos e exibimos varios exemplos de multi-ideais coerentes e de ideais coerentes de polinômios. / Mestre em Matemática
6

Linearização de aplicações multilineares contínuas entre espaços de Banach e multi-ideais de composição / Linearization of continuous multilinear mappings between Banach spaces and composition multi-ideals

Silva, Alessandra Ribeiro da 23 February 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The rst aim of this dissertation is to construct the tensor product of nitely many linear spaces from elementary tensors and to show that this is the space through which multilinear mappings can be linearized. Next continuous multilinear mappings between Banach spaces are studied. The projective norm is introduced in the tensor product in order to perform the linearization of continuous multilinear mappings. The last chapter is devoted to the study of operator ideals and their generalization to the multilinear setting. The interplay between the theory of multi-ideals and the projective tensor product is established by the theory of composition multi-ideals. / O primeiro objetivo desta dissertação é construir o produto tensorial de um número finito de espaços vetoriais a partir dos tensores elementares e mostrar que e atraves desse espaco que aplicações multilineares podem ser linearizadas. Em seguida são estudadas as aplicações multilineares contnuas entre espacos de Banach. A norma projetiva e introduzida no produto tensorial para realizar a linearização das aplicações multilineares contnuas. No ultimo captulo os ideais de operadores lineares são estudados e generalizados para o contexto de ideais de aplicações multilineares. A conexão da teoria de multi-ideais com o produto tensorial projetivo e feita atraves dos multi-ideais de composição. / Mestre em Matemática

Page generated in 0.1002 seconds