• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identidades de álgebras de matrizes e Teorema de Amitsur-Levitzki. / Identities of matrix algebras and Amitsur-Levitzki's Theorem.

OLIVEIRA, Marciel Medeiros de. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T16:54:03Z No. of bitstreams: 1 MACIEL MEDEIROS DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 998582 bytes, checksum: 142de66a057d7d36764dfcef2f50590c (MD5) / Made available in DSpace on 2018-07-25T16:54:03Z (GMT). No. of bitstreams: 1 MACIEL MEDEIROS DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 998582 bytes, checksum: 142de66a057d7d36764dfcef2f50590c (MD5) Previous issue date: 2010-12 / Capes / Neste trabalho fazemos uma abordagem sobre as identidades polinomiais da álgebra das matrizes Mn(K), onde K é um corpo. Inicialmente, apresentamos as provas de Rosset e Swan para o Teorema de Amitsur-Levitzki. Em seguida, fazemos um estudo sobre as identidades de Mn(K) de grau2n+1 para n >2 (considerando charK=0) e fechamos essa abordagem com a apresentação da resposta de Chang para a questão sugeridaporFormaneksobreminimalidadedeuminteiropositivomtalqueopolinômio duplo de Capelli Dm é uma identidade para Mn(K). / In this work we approach polinomial identities of the algebra of matrix Mn(K), whereK isafield. Initially, we present the Rosset’s and Swan’s proofs for the Theorem of Amitsur-Levitzki. Afterward, we make a study on the identities of Mn(K) of2n+1 degree (considering charK =0). We end this approach with the presentation of the minimality of a integer positive number m such that the Capelli double polinomial Dm is an identity of Mn(K).

Page generated in 0.1088 seconds