Spelling suggestions: "subject:"identidades polinomial - algebra"" "subject:"ddentidades polinomial - algebra""
1 |
Identidades de álgebras de matrizes e Teorema de Amitsur-Levitzki. / Identities of matrix algebras and Amitsur-Levitzki's Theorem.OLIVEIRA, Marciel Medeiros de. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T16:54:03Z
No. of bitstreams: 1
MACIEL MEDEIROS DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 998582 bytes, checksum: 142de66a057d7d36764dfcef2f50590c (MD5) / Made available in DSpace on 2018-07-25T16:54:03Z (GMT). No. of bitstreams: 1
MACIEL MEDEIROS DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 998582 bytes, checksum: 142de66a057d7d36764dfcef2f50590c (MD5)
Previous issue date: 2010-12 / Capes / Neste trabalho fazemos uma abordagem sobre as identidades polinomiais da álgebra
das matrizes Mn(K), onde K é um corpo. Inicialmente, apresentamos as provas de
Rosset e Swan para o Teorema de Amitsur-Levitzki. Em seguida, fazemos um estudo
sobre as identidades de Mn(K) de grau2n+1 para n >2 (considerando charK=0) e
fechamos essa abordagem com a apresentação da resposta de Chang para a questão
sugeridaporFormaneksobreminimalidadedeuminteiropositivomtalqueopolinômio
duplo de Capelli Dm é uma identidade para Mn(K). / In this work we approach polinomial identities of the algebra of matrix Mn(K),
whereK isafield. Initially, we present the Rosset’s and Swan’s proofs for the Theorem
of Amitsur-Levitzki. Afterward, we make a study on the identities of Mn(K) of2n+1
degree (considering charK =0). We end this approach with the presentation of the
minimality of a integer positive number m such that the Capelli double polinomial Dm
is an identity of Mn(K).
|
2 |
A dimensão de Gelfand-Kirillov e algumas aplicações a PI-Teoria. / The Gelfand-Kirillov dimension and some applications to PI-Theory.LOBÃO, Carlos David de Carvalho. 22 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-22T14:49:45Z
No. of bitstreams: 1
CARLOS DAVID DE CARVALHO LOBÃO - DISSERTAÇÃO PPGMAT 2009..pdf: 418073 bytes, checksum: b2deb42599e396408cd91ddf1721d8eb (MD5) / Made available in DSpace on 2018-07-22T14:49:45Z (GMT). No. of bitstreams: 1
CARLOS DAVID DE CARVALHO LOBÃO - DISSERTAÇÃO PPGMAT 2009..pdf: 418073 bytes, checksum: b2deb42599e396408cd91ddf1721d8eb (MD5)
Previous issue date: 2009-03 / As álgebras verbalmente primas são bem conhecidas em característica 0. Já sobre corpos de característica p > 2 pouco sabemos sobre elas. Apresentamos modelos genéricos e calcularemos a dimensão de Gelfand-kirillov para as álgebras E⊗E, Aa,b, Ma,b(E)⊗E e Ma,b(E)⊗E. Como consequência, obteremos a prova de não PI-equivalência entre álgebras importantes para PI-Teoria em características positiva. / The verbally prime algebras are well understood in characteristic 0 while over a field of characteristic p > 2 little is known about them. In this work we discuss some sharp differents between these two generics cases for the characteristc. We exhibit constructions of generic models. By using these models we compute the Gelfand-Kirillov dimension of the relatively free algebras of rank m in the varieties generated by E⊗E, Aa,b, Ma,b(E)⊗E e Ma,b(E)⊗E. As consequence we obtain the PI non equivalence of important algebras for the PI theory in positive characteristic.
|
Page generated in 0.112 seconds