• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NAno‐Composites par la recherche des équilibres.

Lomello-Tafin, Marc 03 December 2010 (has links) (PDF)
La synthèse de structures nanométriques nouvelles, de type métal/oxyde et mousses métalliques, présente un fort intérêt pour leurs applications potentielles en catalyse. La détection et la séparation de gaz, la libération lente de médicaments pour l'industrie pharmaceutique en sont des exemples. Cependant, les différentes méthodes de synthèse, connues à ce jour, présentent de nombreux inconvénients, et un effort considérable a été fait pour trouver de nouveaux procédés, moins coûteux et plus respectueux de l'environnement. Dans cette optique, nous avons mis au point et breveté une nouvelle méthode de synthèse de nano-composites issus de l'oxydation d'un alliage métallique précurseur. Le choix des constituants du précurseur métallique se détermine par le type de support, par le ou les métaux nobles, qui fonctionnaliseront le catalyseur. En collaboration avec l'Institut de Recherche sur la Catalyse et l'Environnement de Lyon (IRCELYON), nous avons montré que les propriétés du nano-composite (composition, morphologie des agglomérats et activité catalytique) découlent de la microstructure de l'alliage métallique de départ. Ainsi, la connaissance des équilibres entre phases des systèmes métalliques précurseurs constitue une donnée nécessaire à la mise au point et à l'optimisation du procédé de fabrication des catalyseurs. Une part importante de nos activités de recherche, centrées sur l'élaboration et la caractérisation de nano-composites, concerne la mesure de données thermodynamiques et structurales avec l'établissement des diagrammes d'équilibres entre phases comme fil conducteur. Ces études ont nécessité le développement d'une méthodologie spécifique à chaque système pour obtenir des données fiables. La découverte de nouveaux composés intermétalliques a permis d'apporter des informations indispensables à la description des équilibres entre phases des systèmes précurseurs et a conduit au dépôt d'un second brevet pour la préparation de nano-composites à base de terres rares. L'établissement des systèmes binaires Zr-Au, Ce-Au et Ce-Pt offre maintenant des perspectives de transformation de systèmes ternaires et d'ordre supérieur, ouvrant ainsi le champ des applications. Par leur aspect pluridisciplinaire, ces études ont conduit à une association de plus en plus forte de compétences et suivent maintenant deux voies de développement : caractérisations thermodynamiques et structurales de systèmes métalliques et intégration des matériaux actifs dans des capteurs de gaz. La première voie se veut académique, elle offre un large panel d'études de systèmes précurseurs et contribue à la préparation de catalyseurs modèles, nécessaire notamment à l'étude des mécanismes réactionnels menée à IRCELYON. L'autre voie, en prise directe avec les applications industrielles, concerne la maîtrise des procédés de fabrication, leur optimisation et le développement de capteurs de gaz. Dans cet exposé, des exemples d'études illustrent quelle a été notre démarche et comment l'ensemble de nos travaux contribue à démontrer que la connaissance des diagrammes de phases est source d'innovation, toujours d'actualité pour la mise au point et l'optimisation des procédés. Une attention particulière est portée au système binaire Zr-Au qui est à l'origine de ces études et dont la transformation de ses alliages a permis d'élaborer des nano-structures à base d'or, actives et originales. L'exposé se terminera par la présentation d'un projet de recherche visant à élaborer des nano-composites à base de platine supportés par un oxyde mixte et d'un projet de valorisation qui porte sur la réalisation d'un capteur de monoxyde de carbone à usage domestique.
2

Profilage système et leviers verts pour les infrastructures distribuées à grande échelle

Tsafack Chetsa, Ghislain Landry 03 December 2013 (has links) (PDF)
De nos jours, réduire la consommation énergétique des infrastructures de calcul à grande échelle est devenu un véritable challenge aussi bien dans le monde académique qu'industriel. Ceci est justifié par les nombreux efforts visant à réduire la consommation énergétique de ceux-ci. Ces efforts peuvent sans nuire à la généralité être divisés en deux groupes : les approches matérielles et les approches logicielles. Contrairement aux approches matérielles, les approches logicielles connaissent très peu de succès à cause de leurs complexités. En effet, elles se focalisent sur les applications et requièrent souvent une très bonne compréhension des solutions proposées et/ou de l'application considérée. Ce fait restreint leur utilisation à un nombre limité d'experts puisqu'en général les utilisateurs n'ont pas les compétences nécessaires à leurs implémentation. Aussi, les solutions actuelles en plus de leurs complexités de déploiement ne prennent en compte que le processeur alors que les composants tel que la mémoire, le stockage et le réseau sont eux aussi de gros consommateurs d'énergie. Cette thèse propose une méthodologie de réduction de la consommation énergétique des infrastructures de calcul à grande échelle. Elaborée en trois étapes à savoir : (i) détection de phases, (ii) caractérisation de phases détectées et (iii) identification de phases et reconfiguration du système ; elle s'abstrait de toute application en se focalisant sur l'infrastructure dont elle analyse le comportement au cours de son fonctionnement afin de prendre des décisions de reconfiguration. La méthodologie proposée est implémentée et évaluée sur des grappes de calcul à haute performance de tailles variées par le biais de MREEF (Multi-Resource Energy Efficient Framework). MREEF implémente la méthodologie de réduction énergétique de manière à permettre aux utilisateurs d'implémenter leurs propres mécanismes de reconfiguration du système en fonction des besoins. Les résultats expérimentaux montrent que la méthodologie proposée réduit la consommation énergétique de 24% pour seulement une perte de performance de moins de 7%. Ils montrent aussi que pour réduire la consommation énergétique des systèmes, on peut s'appuyer sur les sous-systèmes tels que les sous-systèmes de stockage et de communication. Nos validations montrent que notre méthodologie s'étend facilement à un grand nombre de grappes de calcul sensibles à l'énergie (energy aware). L'extension de MREEF dans les environnements virtualisés tel que le cloud montre que la méthodologie proposée peut être utilisée dans beaucoup d'autres environnements de calcul.
3

System Profiling and Green Capabilities for Large Scale and Distributed Infrastructures / Profilage système et leviers verts pour les infrastructures distribuées à grande échelle

Tsafack Chetsa, Ghislain Landry 03 December 2013 (has links)
De nos jours, réduire la consommation énergétique des infrastructures de calcul à grande échelle est devenu un véritable challenge aussi bien dans le monde académique qu’industriel. Ceci est justifié par les nombreux efforts visant à réduire la consommation énergétique de ceux-ci. Ces efforts peuvent sans nuire à la généralité être divisés en deux groupes : les approches matérielles et les approches logicielles.Contrairement aux approches matérielles, les approches logicielles connaissent très peu de succès à cause de leurs complexités. En effet, elles se focalisent sur les applications et requièrent souvent une très bonne compréhension des solutions proposées et/ou de l’application considérée. Ce fait restreint leur utilisation à un nombre limité d’experts puisqu’en général les utilisateurs n’ont pas les compétences nécessaires à leurs implémentation. Aussi, les solutions actuelles en plus de leurs complexités de déploiement ne prennent en compte que le processeur alors que les composants tel que la mémoire, le stockage et le réseau sont eux aussi de gros consommateurs d’énergie. Cette thèse propose une méthodologie de réduction de la consommation énergétique des infrastructures de calcul à grande échelle. Elaborée en trois étapes à savoir : (i) détection de phases, (ii) caractérisation de phases détectées et (iii) identification de phases et reconfiguration du système ; elle s’abstrait de toute application en se focalisant sur l’infrastructure dont elle analyse le comportement au cours de son fonctionnement afin de prendre des décisions de reconfiguration.La méthodologie proposée est implémentée et évaluée sur des grappes de calcul à haute performance de tailles variées par le biais de MREEF (Multi-Resource Energy Efficient Framework). MREEF implémente la méthodologie de réduction énergétique de manière à permettre aux utilisateurs d’implémenter leurs propres mécanismes de reconfiguration du système en fonction des besoins. Les résultats expérimentaux montrent que la méthodologie proposée réduit la consommation énergétique de 24% pour seulement une perte de performance de moins de 7%. Ils montrent aussi que pour réduire la consommation énergétique des systèmes, on peut s’appuyer sur les sous-systèmes tels que les sous-systèmes de stockage et de communication. Nos validations montrent que notre méthodologie s’étend facilement à un grand nombre de grappes de calcul sensibles à l’énergie (energy aware). L’extension de MREEF dans les environnements virtualisés tel que le cloud montre que la méthodologie proposée peut être utilisée dans beaucoup d’autres environnements de calcul. / Nowadays, reducing the energy consumption of large scale and distributed infrastructures has truly become a challenge for both industry and academia. This is corroborated by the many efforts aiming to reduce the energy consumption of those systems. Initiatives for reducing the energy consumption of large scale and distributed infrastructures can without loss of generality be broken into hardware and software initiatives.Unlike their hardware counterpart, software solutions to the energy reduction problem in large scale and distributed infrastructures hardly result in real deployments. At the one hand, this can be justified by the fact that they are application oriented. At the other hand, their failure can be attributed to their complex nature which often requires vast technical knowledge behind proposed solutions and/or thorough understanding of applications at hand. This restricts their use to a limited number of experts, because users usually lack adequate skills. In addition, although subsystems including the memory are becoming more and more power hungry, current software energy reduction techniques fail to take them into account. This thesis proposes a methodology for reducing the energy consumption of large scale and distributed infrastructures. Broken into three steps known as (i) phase identification, (ii) phase characterization, and (iii) phase identification and system reconfiguration; our methodology abstracts away from any individual applications as it focuses on the infrastructure, which it analyses the runtime behaviour and takes reconfiguration decisions accordingly.The proposed methodology is implemented and evaluated in high performance computing (HPC) clusters of varied sizes through a Multi-Resource Energy Efficient Framework (MREEF). MREEF implements the proposed energy reduction methodology so as to leave users with the choice of implementing their own system reconfiguration decisions depending on their needs. Experimental results show that our methodology reduces the energy consumption of the overall infrastructure of up to 24% with less than 7% performance degradation. By taking into account all subsystems, our experiments demonstrate that the energy reduction problem in large scale and distributed infrastructures can benefit from more than “the traditional” processor frequency scaling. Experiments in clusters of varied sizes demonstrate that MREEF and therefore our methodology can easily be extended to a large number of energy aware clusters. The extension of MREEF to virtualized environments like cloud shows that the proposed methodology goes beyond HPC systems and can be used in many other computing environments.

Page generated in 0.1447 seconds