• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Representação em multiplas escalas para identificação automatica de estruturas em imagens medicas / Multiscale representation for automatic identification of structures in medical images

Rebelo, Marina de Fatima de Sa 14 October 2005 (has links)
Orientadores: Lincoln de Assis Moura Junior, Sergio Shiguemi Furuie, Eduardo Tavares Costa / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-05T07:59:16Z (GMT). No. of bitstreams: 1 Rebelo_MarinadeFatimadeSa_D.pdf: 3509163 bytes, checksum: 9cd8b854b66521bcf122c15fe2fd1ffd (MD5) Previous issue date: 2005 / Resumo: A identificação de estruturas constitui uma etapa importante em processamento de imagens médicas. Este trabalho pretende contribuir na área de identificação de imagens médicas, e tem por objetivo propor uma metodologia genérica para identificação de estruturas, utilizando uma abordagem em múltiplas resoluções, o espaço de escalas. Avalia-se a utilização de uma representação de dados em múltiplas escalas que permite a inclusão de conhecimento a priori sobre as estruturas em diversas escalas e ainda explora-se a idéia de realizar o processamento em uma escala apropriada. A metodologia é composta das seguintes etapas: (i) criação de uma representação dos dados em diversas escalas utilizando a teoria de espaço de escalas linear. (ii) A seguir, analisa-se as imagens presentes em todas as escalas e detecta-se as características relevantes das imagens. O produto dessa etapa é uma representação em forma de árvore que mapeia as relações entre as estruturas no espaço de escalas. Essa representação serve como base para o passo seguinte, o processamento de alto nível, no qual o conhecimento a priori sobre a estrutura procurada é modelado e incluído na representação. (iii) A última etapa é o casamento entre os elementos presentes na estrutura construída e um padrão conhecido que descreve a estrutura de interesse. A metodologia é genérica e o tipo de informação armazenada no padrão depende da aplicação específica. Neste trabalho, foi implementado um protótipo, no qual são utilizadas informações geométricas para identificação de órgãos em imagens 2D de phantom que reproduz a anatomia humana. Os resultados da aplicação da metodologia em imagens com diferentes níveis de ruído e contraste foram bastante satisfatórios. As duas primeiras etapas já estão implementadas para imagens 3D e novos parâmetros podem ser facilmente incluídos na etapa de casamento para aplicações em imagens tri-dimensionais / Abstract: The identification of structures is an important step for several applications in the field of medical imaging. The purpose of this thesis is to contribute to the field of identification in medical images. Its main goal is to propose a generic methodology for identification of structures by using a multiresolution approach, the scale-space. We evaluate the use of a data representation that allows the inclusion of a priori knowledge about the structures in several scales and we also develop the idea of an appropriate scale to perform the processing. The proposed methodology comprises the following steps: (i) creation of an image representation in several scales using the scale space theory. (ii) Then the images in all scales are inspected and relevant features are extracted; the output of this step is a tree structure that maps the relations of the detected features throughout the scale space; the representation serves as a guide to subsequent high level processing step, where a priori knowledge about the desired feature is modeled and included in the representation. (iii) The last step is the matching between the elements present in the built structure and a known pattern that describes the structure of interest. The proposed methodology is generic and the type of information to be used depends strongly on the application. In this Thesis, we built a prototype application in which we used geometric information for identification of organs in 2D phantom images that reproduces human anatomy. The results of applying this method to a set of images with different noise and contrast levels were quite satisfactory. The two initial steps of the method were also implemented for 3D images. New parameters can be easily included in the matching step for extension to 3D / Doutorado / Engenharia Biomedica / Doutor em Engenharia Elétrica
2

Calcul de centralité et identification de structures de communautés dans les graphes de documents

Chikhi, Nacim Fateh 17 December 2010 (has links) (PDF)
Dans cette thèse, nous nous intéressons à la caractérisation de grandes collections de documents (en utilisant les liens entre ces derniers) afin de faciliter leur utilisation et leur exploitation par des humains ou par des outils informatiques. Dans un premier temps, nous avons abordé la problématique du calcul de centralité dans les graphes de documents. Nous avons décrit les principaux algorithmes de calcul de centralité existants en mettant l'accent sur le problème TKC (Tightly Knit Community) dont souffre la plupart des mesures de centralité récentes. Ensuite, nous avons proposé trois nouveaux algorithmes de calcul de centralité (MHITS, NHITS et DocRank) permettant d'affronter le phénomène TKC. Les différents algorithmes proposés ont été évalués et comparés aux approches existantes. Des critères d'évaluation ont notamment été proposés pour mesurer l'effet TKC. Dans un deuxième temps, nous nous sommes intéressés au problème de la classification non supervisée de documents. Plus précisément, nous avons envisagé ce regroupement comme une tâche d'identification de structures de communautés (ISC) dans les graphes de documents. Nous avons décrit les principales approches d'ISC existantes en distinguant les approches basées sur un modèle génératif des approches algorithmiques ou classiques. Puis, nous avons proposé un modèle génératif (SPCE) basé sur le lissage et sur une initialisation appropriée pour l'ISC dans des graphes de faible densité. Le modèle SPCE a été évalué et validé en le comparant à d'autres approches d'ISC. Enfin, nous avons montré que le modèle SPCE pouvait être étendu pour prendre en compte simultanément les liens et les contenus des documents.

Page generated in 0.1668 seconds