• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polyreactive and antigen-specific B-cell response to Streptococcus pneumoniae

Thompson, Rebecca 30 May 2012 (has links)
No description available.
2

Human B Cell Responses to Infection with Pathogenic and Commensal Neisseria Species

So, Nancy Suk Yin 19 November 2013 (has links)
The Neisseria genus includes pathogens, Neisseria gonorrhoeae (Ngo) and Neisseria meningitidis, as well as commensals. Ngo, the cause of gonorrhea, induces massive inflammation but a surprising lack of adaptive immune responses. We have observed that Ngo can inhibit both T cell activation and dendritic cell maturation through interaction with the host expressed co-inhibitory receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Therefore, I wondered whether B cells may also be affected in this manner. Herein, I examine primary human B cell responses to infection with Ngo, as well as the other Neisseria species. B cells infected with Ngo show no sign of inhibition, regardless of their ability to bind CEACAM1, instead responding to gonococci with robust activation and proliferation. There are distinct subsets of B cells found in the periphery and, intriguingly, the IgM memory B cell subset expand and produce polyreactive IgM in response to goncoccal infection. These cells are innate in function, producing low affinity, polyclonal IgM that is protective against bacterial and fungal dissemination. This effect was broadly specific for Neisseria sp., as B cell infection with all commensal Neisseria species examined induced innate B cell responses. Curiously, meningococcal strains avoid inducing the innate B cell responses, making it enticing to hypothesize that its avoidance of such an ancient immune response may contribute to its ability to cause disease in humans. Finally, I tested whether gonococcal Opa protein binding to CEACAM1 affects primary human B cell activation, and show that no inhibition was observed. This absence of co-inhibitory function of neisserial-bound CEACAM1 may reflect inherent differences between distinctive cell types. Combined, the results in this thesis contribute new insight regarding the poorly characterized human IgM memory B cells, as well as to the function of CEACAM1 in lymphocytes.
3

Human B Cell Responses to Infection with Pathogenic and Commensal Neisseria Species

So, Nancy Suk Yin 19 November 2013 (has links)
The Neisseria genus includes pathogens, Neisseria gonorrhoeae (Ngo) and Neisseria meningitidis, as well as commensals. Ngo, the cause of gonorrhea, induces massive inflammation but a surprising lack of adaptive immune responses. We have observed that Ngo can inhibit both T cell activation and dendritic cell maturation through interaction with the host expressed co-inhibitory receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Therefore, I wondered whether B cells may also be affected in this manner. Herein, I examine primary human B cell responses to infection with Ngo, as well as the other Neisseria species. B cells infected with Ngo show no sign of inhibition, regardless of their ability to bind CEACAM1, instead responding to gonococci with robust activation and proliferation. There are distinct subsets of B cells found in the periphery and, intriguingly, the IgM memory B cell subset expand and produce polyreactive IgM in response to goncoccal infection. These cells are innate in function, producing low affinity, polyclonal IgM that is protective against bacterial and fungal dissemination. This effect was broadly specific for Neisseria sp., as B cell infection with all commensal Neisseria species examined induced innate B cell responses. Curiously, meningococcal strains avoid inducing the innate B cell responses, making it enticing to hypothesize that its avoidance of such an ancient immune response may contribute to its ability to cause disease in humans. Finally, I tested whether gonococcal Opa protein binding to CEACAM1 affects primary human B cell activation, and show that no inhibition was observed. This absence of co-inhibitory function of neisserial-bound CEACAM1 may reflect inherent differences between distinctive cell types. Combined, the results in this thesis contribute new insight regarding the poorly characterized human IgM memory B cells, as well as to the function of CEACAM1 in lymphocytes.

Page generated in 0.0288 seconds