• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 10
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large volume explosive silicic volcanism in the Central Andes of N. Chile

De Silva, Shanaka Lilath January 1987 (has links)
No description available.
2

Vent-derived and deposit-derived pyroclastic flows and ignimbrites examples at Pinatubo Volcano, Philippines /

Torres, Ronnie C. January 2001 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2001. / Includes bibliographical references (leaves 196-213). Also available on microfiche.
3

Pre-eruptive conditions of the oligocene Wah Wah Springs Tuff, southeastern Great Basin ignimbrite province /

Woolf, Kurtus Steven, January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geological Sciences, 2008. / Includes bibliographical references (p. 53-57).
4

2D-Modelling of Earthquake-Induced Rockfall from Basaltic Ignimbrite Cliffs at Redcliffs, Christchurch, New Zealand

Brehaut, Janet Catherine January 2012 (has links)
This thesis is concerned with modelling rockfall parameters associated with cliff collapse debris and the resultant “ramp” that formed following the high peak ground acceleration (PGA) events of 22 February 2011 and 13 June 2011. The Christchurch suburb of Redcliffs, located at the base of the Port Hills on the northern side of Banks Peninsula, New Zealand, is comprised of Miocene-age volcanics with valley-floor infilling marine sediments. The area is dominated by basaltic lava flows of the Mt Pleasant Formation, which is a suite of rocks forming part of the Lyttelton Volcanic Group that were erupted 11.0-10.0Ma. Fresh exposure enabled the identification of a basaltic ignimbrite unit at the study site overlying an orange tuff unit that forms a marker horizon spanning the length of the field area. Prior to this thesis, basaltic ignimbrite on Banks Peninsula has not been recorded, so descriptions and interpretations of this unit are the first presented. Mapping of the cliff face by remote observation, and analysis of hand samples collected from the base of the debris slopes, has identified a very strong (>200MPa), columnar-jointed, welded unit, and a very weak (<5MPa), massive, so-called brecciated unit that together represent the end-member components of the basaltic ignimbrite. Geochemical analysis shows the welded unit is picrite basalt, and the brecciated unit is hawaiite, making both clearly distinguishable from the underlying trachyandesite tuff. RocFall™ 4.0 was used to model future rockfalls at Redcliffs. RocFall™ is a two-dimensional (2D), hybrid, probabilistic modelling programme for which topographical profile data is used to generate slope profiles. GNS Science collected the data used for slope profile input in March 2011. An initial sensitivity analysis proved the Terrestrial Laser Scan (TLS)-derived slope to be too detailed to show any results when the slope roughness parameter was tested. A simplified slope profile enabled slope roughness to be varied, however the resulting model did not correlate with field observations as well. By using slope profile data from March 2011, modelled rockfall behaviour has been calibrated with observed rockfall runout at Redcliffs in the 13 June 2011 event to create a more accurate rockfall model. The rockfall model was developed on a single slope profile (Section E), with the chosen model then applied to four other section lines (A-D) to test the accuracy of the model, and to assess future rockfall runout across a wider area. Results from Section Lines A, B, and E correlate very well with field observations, with <=5% runout exceeding the modelled slope, and maximum bounce height at the toe of the slope <=1m. This is considered to lie within observed limits given the expectation that talus slopes will act as a ramp on which modelled rocks travel further downslope. Section Lines C and D produced higher runout percentage values than the other three section lines (23% and 85% exceeding the base of the slope, respectively). Section D also has a much higher maximum bounce height at the toe of the slope (~8.0m above the slope compared to <=1.0m for the other four sections). Results from modelling of all sections shows the significance of the ratio between total cliff height (H) and horizontal slope distance (x), and of maximum drop height to the top of the talus (H*) and horizontal slope distance (x). H/x can be applied to the horizontal to vertical ratio (H:V) as used commonly to identify potential slope instability. Using the maximum value from modelling at Redcliffs, the future runout limit can be identified by applying a 1.4H:1V ratio to the remainder of the cliff face. Additionally, the H*/x parameter shows that when H*/x >=0.6, the percentage of rock runout passing the toe of the slope will exceed 5%. When H*/x >=0.75, the maximum bounce height at the toe of the slope can be far greater than when H*/x is below this threshold. Both of these parameters can be easily obtained, and can contribute valuable guideline data to inform future land-use planning decisions. This thesis project has demonstrated the applicability of a 2D probabilistic-based model (RocFall™ 4.0) to evaluate rockfall runout on the talus slope (or ramp) at the base of ~35-70m high cliff with a basaltic ignimbrite source. Limitations of the modelling programme have been identified, in particular difficulties with adjusting modelled roughness of the slope profile and the inability to consider fragmentation. The runout profile using RocFall™ has been successfully calibrated against actual profiles and some anomalous results have been identified.
5

The Cerro Guacha caldera complex : an upper Miocene-Pliocene polycyclic volcano-tectonic structure in the Altiplano Puna Volcanic Complex of the Central Andes of Bolivia

Iriarte, Rodrigo 22 May 2012 (has links)
Four multicyclic complex calderas and smaller ignimbrite shields located within the Altiplano Puna Volcanic Complex of the Central Andes (APVC) erupted 13000 km�� of magma within the last 11 Ma. One of the largest and most complex of these is the Cerro Guacha Caldera. Ar-Ar age determinations and paleomagnetic directions suggest that the Cerro Guacha Caldera was formed by two major eruptions, caldera collapse, resurgence cycles and several smaller eruptions. Two major ignimbrites (> 600 km��) are found with ������Ar-�����Ar from biotites and sanidines of 5.65 �� 0.01Ma for the 1300 km�� (magma volume) Guacha ignimbrite and 3.49 �� 0.01Ma for the 800 km�� Tara Ignimbrite. The last major eruption occurred on the western flank producing the 1.72 �� 0.02 Ma Puripica Chico Ignimbrite with a volume of approximately 10 km��. Characteristic remanent magnetization data (ChRM) for these ignimbrites show that the Guacha has reverse polarity, while the Tara is normally polarized and the magnetic fingerprints have allowed their current full extents to be identified. A conspicuous lineament of volcanic structures in the eastern part of the caldera, bordering a caldera moat, filled out welded ignimbrites and sedimentary lacustrine sequences suggest an earlier 60x40 km outer collapse associated with the Guacha explosive episode. A central graben formed on the Guacha welded ignimbrite is related to a first episode of resurgence. Evidence of a second 30 x15 km inner collapse includes offset of welded Guacha ignimbrites and alignment of lava domes associated with the Tara ignimbrite. A second resurgence episode is suggested by the presence of an uplifted central block consisting primarily of welded Tara ignimbrite. As a whole the three ignimbrites (Guacha, Tara and Puripica Chico) share the same petrological and geochemical characteristics: high-K series, compositional ranges from dacite to rhyolite, with andesitic members present as lavas (for the Guacha and Puripica Chico Ignimbrites) and as pumices (for the Tara Ignimbrite). Highest silica content is found in the Chajnantor dome. Rayleigh modeling for Ba, Rb and Sr suggests at least 60% of crystal fractionation to account for the compositional variation between the Guacha andesite and the Chajnantor dome. Dy/Hb ratio increases with time from the Guacha andesite to the Negreal andesite suggesting stabilization of garnet owing to crustal thickening. Fe-Ti exchange geothermometry for the Tara Ignimbrite yielded log fO��� values ranging from -13.06 to -13.38 and temperatures of 714�� to 801��C. Amphibole geobarometry yielded pressures ranging from 150 to 180 MPa equivalent to 5.3 and 6.4 km depth respectively for the Tara Ignimbrite; the pressures range between 133 to 242 MPa, equivalent to 5.0 to 9.2 km depth for the Guacha Ignimbrite. The zircon saturation method yielded saturation temperatures of 716�� and 705��C for the Guacha and Chajnantor dome respectively and 784��C for the Tara Ignimbrite. The zircon crystallization range for the magmas of the Cerro Guacha Caldera is 1.25 Ma for the Guacha Ignimbrite; 1.09 Ma for the Puripica Chico Ignimbrite and 0.95 Ma for the Tara Ignimbrite. Recycling of antecrystic zircons within the caldera magmas is continuos through time. / Graduation date: 2012
6

Cooling Before Super-Eruption: No Role for Rejuvenation in the Cottonwood Wash Tuff Magma Body, Southern Great Basin Ignimbrite Province, Utah and Nevada

Ross, Keryn Tobler 01 December 2015 (has links)
The model of rejuvenation of a near-solidus crystal mush to produce large volumes of crystal-rich magma is tested here by analyzing the mineralogical, chemical, modal, and physical characteristics of the 31.1 Ma super-eruptive (2000 km3) Cottonwood Wash Tuff. It is the oldest in a series of three so-called "monotonous intermediate" ignimbrites from the Indian Peak-Caliente volcanic field in southern Utah and Nevada. A crystal-rich (~50% Pl > Qz ≈ Hbl ≈ Bt > Mag ≈ Ilm > Cpx + Zrn + Ap+ Po) dacite (62 - 69 wt% SiO2), the Cottonwood Wash Tuff is similar in age, volume, mineralogy, crystallinity, and elemental composition to the 28.0 Ma, ~5000 km3 Fish Canyon Tuff (~45% Pl + Kfs + Qz + Hbl + Bt + Ttn + Mag + Ilm + Ap + Zrn + Po, 66 - 68 wt% SiO2), used as the basis of the rejuvenation model, which suggests that magma chambers remain in a near-solidus state until a late heating event melts the magma enough to allow eruption. The Cottonwood Wash magma chamber was compositionally varied, as shown by the composition of mineral and juvenile clast compositions. Most of the whole-rock compositional variations are likely due to the variation of mineral proportions induced by shear in the magma chamber. A volumetrically minor component with evolved mineral compositionss, is represented by "evolved" juvenile clasts. Mineral compositions and experimental phase relationships show the pre-eruption magma crystallized at 800°C, 2.3 kb under water-undersaturated but oxidized conditions (delta QFM = 2.1). The majority of plagioclase and amphibole grains exhibit small-scale oscillatory zonation; where systematic compositional zonation exists, normal and reverse zonation are equally present. Cathodoluminescence of quartz reveals typically normally zoned phenocrysts with late resorption, considered to be the result of eruptive decompression. Many of the characteristics used to identify the warming of a near-solidus mush for the Fish Canyon Tuff are not present in the Cottonwood Wash Tuff [i.e., reversely zoned hornblende or plagioclase, partially remelted mineral aggregates, evidence of fluid saturation, resorption textures not related to decompression, rapakivi mantles, and hybrid andesite inclusions]. The Cottonwood Wash Tuff magma system did not undergo rejuvenation from a near-solidus state. Instead, the magma was apparently cooling and crystallizing just prior to eruption.
7

Cooling Before Super-Eruption: No Role for Rejuvenation in the Cottonwood Wash Tuff Magma Body, Southern Great Basin Ignimbrite Province, Utah and Nevada

Ross, Keryn Tobler 01 December 2015 (has links)
The model of rejuvenation of a near-solidus crystal mush to produce large volumes of crystal-rich magma is tested here by analyzing the mineralogical, chemical, modal, and physical characteristics of the 31.1 Ma super-eruptive (2000 km3) Cottonwood Wash Tuff. It is the oldest in a series of three so-called “monotonous intermediate” ignimbrites from the Indian Peak-Caliente volcanic field in southern Utah and Nevada. A crystal-rich (~50% Pl > Qz ≈ Hbl ≈ Bt > Mag ≈ Ilm > Cpx + Zrn + Ap+ Po) dacite (62 – 69 wt% SiO2), the Cottonwood Wash Tuff is similar in age, volume, mineralogy, crystallinity, and elemental composition to the 28.0 Ma, ~5000 km3 Fish Canyon Tuff (~45% Pl + Kfs + Qz + Hbl + Bt + Ttn + Mag + Ilm + Ap + Zrn + Po, 66 – 68 wt% SiO2), used as the basis of the rejuvenation model, which suggests that magma chambers remain in a near-solidus state until a late heating event melts the magma enough to allow eruption. The Cottonwood Wash magma chamber was compositionally varied, as shown by the composition of mineral and juvenile clast compositions. Most of the whole-rock compositional variations are likely due to the variation of mineral proportions induced by shear in the magma chamber. A volumetrically minor component with evolved mineral compositionss, is represented by “evolved” juvenile clasts. Mineral compositions and experimental phase relationships show the pre-eruption magma crystallized at 800°C, 2.3 kb under water-undersaturated but oxidized conditions (delta QFM = 2.1). The majority of plagioclase and amphibole grains exhibit small-scale oscillatory zonation; where systematic compositional zonation exists, normal and reverse zonation are equally present. Cathodoluminescence of quartz reveals typically normally zoned phenocrysts with late resorption, considered to be the result of eruptive decompression. Many of the characteristics used to identify the warming of a near-solidus mush for the Fish Canyon Tuff are not present in the Cottonwood Wash Tuff [i.e., reversely zoned hornblende or plagioclase, partially remelted mineral aggregates, evidence of fluid saturation, resorption textures not related to decompression, rapakivi mantles, and hybrid andesite inclusions]. The Cottonwood Wash Tuff magma system did not undergo rejuvenation from a near-solidus state. Instead, the magma was apparently cooling and crystallizing just prior to eruption.
8

Fairy Chimney Development In Cappadocian Ignimbrites (central Anatolia, Turkey)

Sayin, M. Naci 01 March 2008 (has links) (PDF)
The purpose of this study is to evaluate systematic fairy chimney development within Cappadocian ignimbrites. The first step in the sudy is to identify fairy chimney producing ignimbrites. Accordingly the fairy chimneys are formed within Kavak ignimbrite, at Kavak-Zelve transition, and within Zelve and Cemilk&ouml / y ignimbrites. Field measurements are taken from the fairy chimneys to quantify the shape and the size. Slope of the selected areas are identified to investigate the most suitable topography. Analysis have shown that fairy chimneys have basal diameters ranging from 9.7 to 13.7 m, with heights in the range from 8.41 to 21.73 m. The slopes of fairy chimneys are 60 to 70 degrees with a slight asymmetry towards the upslope. The chimneys are sligthy rounded due to the erosion in the slope direction. Distances between the fairy chimneys change from a minimum of 5.45 m for Zelve and 42.72 m for Kavak chimneys. Fairy chimneys are developed in two stages. The first stage is the generation of topography suitable for the formation of fairy chimneys. Three main factors in this stage are degree of welding, thickness of ignimbrite and topographic slope. In the second stage, several local features contribute for the final shaping of the chimneys.
9

Seismic anisotropy beneath the southern Puna Plateau

Robinson, Danielle D., Sandvol, Eric Alan, January 2009 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on December 30, 2009). Thesis advisor: Dr. Eric Sandvol. Includes bibliographical references.
10

Aksaray Bölgesi volkanik hafif agrega oluşumlarının incelenmesi ve endüstriyel kullanılabilirliği /

Şapcı, Nükhet. Yağmurlu, Fuzuli. Gündüz, Lütfullah. January 2008 (has links) (PDF)
Tez (Yüksek Lisans) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı, 2008. / Bibliyografya var.

Page generated in 0.0319 seconds