• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SH3 AND MULTIPLE ANKYRIN REPEAT DOMAIN 3 (SHANK3) AFFECTS THE EXPRESSION OF HYPERPOLARIZATION-ACTIVATED CYCLIC NUCLEOTIDE-GATED (HCN) CHANNELS IN MOUSE MODELS OF AUTISM

Shah, Nikhil N 01 January 2017 (has links)
SH3 and multiple ankyrin repeat domains 3 (SHANK3) is a multidomain scaffold protein that is highly augmented in the postsynaptic density (PSD) of excitatory glutamatergic synapses within the central and peripheral nervous systems. SHANK3 links neurotransmitter receptors, ion channels, and other critical membrane proteins to intracellular cytoskeleton and signal transduction pathways. Mutations in SHANK3 are linked with a number neuropsychiatric disorders including autism spectrum disorders (ASDs). Intellectual disability, impaired memory and learning, and epilepsy are some of the deficits commonly associated with ASDs that result from mutations in SHANK3. Interestingly, these symptoms show some clinical overlap with presentations of human neurological disorders involving hyperpolarization-activated cyclin nucleotide-gated (HCN) channels. In fact, it has recently been demonstrated in human neurons that SHANK3 haploinsufficiency causes Ih-channel dysfunction, and that SHANK3 has a physical interaction with HCN channels via its ANKYRIN repeat domain. These insights suggest that SHANK3 may play important roles in HCN channel expression and function, and put forward the idea that HCN channelopathies may actually encourage some of the symptoms observed in patients with SHANK-deficiency related ASDs. In this study, we provide preliminary data that suggests the ANK domain of SHANK3 interacts with COOH portion of HCN1. We also exploited the differences between two mouse models of autism to show that a subset of SHANK3 isoforms may be involved in the proper expression and function of HCN channels. We found that HCN2 expression is significantly decreased in a mouse model lacking all major isoforms of SHANK3 (exons 13-16 deleted; Δ13-16), while HCN2 expression is unaltered in a mouse model only lacking SHANK3a and SHANK3b (exons 4-9 deleted; Δ4-9). Surprisingly, we also found that HCN4 expression is altered in SHANK3Δ13-16, but not SHANK3Δ4-9. Taken together, our results show HCN channelopathy as a major downstream carrier of SHANK3 deficiency.
2

A computational docking and molecular dynamics simulations study to identify the putative phosphoinositide binding site(s) of HCN channels

Khoualdi, Asma Feriel 04 1900 (has links)
Les canaux nucléotidiques cycliques activés par hyperpolarization (HCN) sont un type de canaux ioniques voltage-dépendants qui contrôlent l'activité rythmique et la plasticité synaptique dans le cœur et le cerveau. Ces canaux permettent aux ions K+ et Na+ de passer, créant ainsi un courant entrant lors de l'hyperpolarization de la membrane. En raison de ses propriétés biophysiques inhabituelles, ce courant est appelé courant «If» ou courant d'hyperpolarization «Ih». Des anomalies du courant Ih sont associées à des arythmies et des troubles neurologiques, y compris l'épilepsie. On constate que différentes molécules modulent ce courant. Des résultats expérimentaux ont montré que les lipides jouent un rôle dans le déplacement de la dépendance en tension des canaux HCN vers des tensions plus positives ou dépolarisées. Le phosphatidylinositol 4,5-bisphosphate de phospholipide endogène et exogène, ou PI (4,5) P2, régule les canaux HCN en déplaçant l'ouverture du canal vers une tension plus dépolarisée. Cette modulation est supposée être par interaction directe de PI (4,5) P2 avec le canal HCN. Ici, nous utilisons la dynamique moléculaire et l'amarrage pour explorer et identifier le site de liaison grâce à l'analyse des contacts et de la stabilité des liaisons hydrogène impliquées dans les molécules de phsiphoinositide et l'interaction des canaux HCN. Nous proposons LYS et ARG du domaine HCN et S3 pour être des résidus clés dans le site de liaison à travers lequel les molécules de phosphoinositide peuvent potentiellement activer le canal. / Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are a type of voltage gated ion channels that control rhythmic activity and synaptic plasticity in the heart and brain. These channels allow K+ and Na+ ions to pass, thereby creating an inward current upon hyperpolarization of the membrane. Due to its unusual biophysical properties, this current is called funny « If» or hyperpolarization « Ih » current. Abnormalities in Ih current are associated with arrythmia and neurological disorders including epilepsy. Different molecules are found to modulate this current. Experimental results have shown that lipids play a role in shifting the voltage dependence of HCN channels to more positive, or depolarized voltages. Both endogenous and exogenous phospholipid phosphatidylinositol 4,5-bisphosphate, or PI(4,5)P2, regulates HCN channels by shifting the opening of the channel to a more depolarized voltage. This modulation is postulated to be through direct interaction of PI(4,5)P2 with the HCN channel. Here, we use molecular dynamics and docking to explore and identify the binding site through analysis of the contacts and stability of the hydrogen bonds involved in phosphoinositide molecules and HCN channel interaction. We propose LYS and ARG residues of the HCN domain and S3 to be key residues in the binding site through which phosphoinositide molecules can potentially activate the channel.

Page generated in 0.0652 seconds