Spelling suggestions: "subject:"image characterization"" "subject:"lmage characterization""
1 |
Méthodes probabilistes basées sur les mots visuels pour la reconnaissance de lieux sémantiques par un robot mobile / Visual words based probalistic methods for semantic places recognitionDubois, Mathieu 20 February 2012 (has links)
Les êtres humains définissent naturellement leur espace quotidien en unités discrètes. Par exemple, nous sommes capables d'identifier le lieu où nous sommes (e.g. le bureau 205) et sa catégorie (i.e. un bureau), sur la base de leur seule apparence visuelle. Les travaux récents en reconnaissance de lieux sémantiques, visent à doter les robots de capacités similaires. Ces unités, appelées "lieux sémantiques", sont caractérisées par une extension spatiale et une unité fonctionnelle, ce qui distingue ce domaine des travaux habituels en cartographie. Nous présentons nos travaux dans le domaine de la reconnaissance de lieux sémantiques. Ces derniers ont plusieurs originalités par rapport à l'état de l'art. Premièrement, ils combinent la caractérisation globale d'une image, intéressante car elle permet de s'affranchir des variations locales de l'apparence des lieux, et les méthodes basées sur les mots visuels, qui reposent sur la classification non-supervisée de descripteurs locaux. Deuxièmement, et de manière intimement reliée, ils tirent parti du flux d'images fourni par le robot en utilisant des méthodes bayésiennes d'intégration temporelle. Dans un premier modèle, nous ne tenons pas compte de l'ordre des images. Le mécanisme d'intégration est donc particulièrement simple mais montre des difficultés à repérer les changements de lieux. Nous élaborons donc plusieurs mécanismes de détection des transitions entre lieux qui ne nécessitent pas d'apprentissage supplémentaire. Une deuxième version enrichit le formalisme classique du filtrage bayésien en utilisant l'ordre local d'apparition des images. Nous comparons nos méthodes à l'état de l'art sur des tâches de reconnaissance d'instances et de catégorisation, en utilisant plusieurs bases de données. Nous étudions l'influence des paramètres sur les performances et comparons les différents types de codage employés sur une même base.Ces expériences montrent que nos méthodes sont supérieures à l'état de l'art, en particulier sur les tâches de catégorisation. / Human beings naturally organize their space as composed of discrete units. Those units, called "semantic places", are characterized by their spatial extend and their functional unity. Moreover, we are able to quickly recognize a given place (e.g. office 205) and its category (i.e. an office), solely on their visual appearance. Recent works in semantic place recognition seek to endow the robot with similar capabilities. Contrary to classical localization and mapping work, this problem is usually tackled as a supervised learning problem. Our contributions are two fold. First, we combine global image characterization, which captures the global organization of the image, and visual words methods which are usually based unsupervised classification of local signatures. Our second but closely related, contribution is to use several images for recognition by using Bayesian methods for temporal integration. Our first model don't use the natural temporal ordering of images. Temporal integration is very simple but has difficulties when the robot moves from one place to another.We thus develop several mechanisms to detect place transitions. Those mechanisms are simple and don't require additional learning. A second model augment the classical Bayesian filtering approach by using the local order among images. We compare our methods to state-of-the-art algorithms on place recognition and place categorization tasks.We study the influence of system parameters and compare the different global characterization methods on the same dataset. These experiments show that our approach while being simple leads to better results especially on the place categorization task.
|
2 |
New methods of characterizing spatio-temporal patterns in laboratory experimentsKurtuldu, Huseyin 25 August 2010 (has links)
Complex patterns arise in many extended nonlinear nonequilibrium systems in physics, chemistry and biology. Information extraction from these
complex patterns is a challenge and has been a main subject of research for many years. We study patterns in Rayleigh-Benard convection (RBC) acquired from our laboratory experiments to develop new characterization techniques for complex spatio-temporal patterns. Computational homology, a new topological characterization technique, is applied to the experimental data to investigate dynamics by quantifying convective patterns in a unique way. The homology analysis is used to detect symmetry breakings between hot and cold flows as a function of thermal
driving in experiments, where other conventional techniques, e.g., curvature and wave-number distribution, failed to reveal this asymmetry.
Furthermore, quantitative information is acquired from the outputs of homology to identify different spatio-temporal states. We use this information to obtain a reduced dynamical description of spatio-temporal chaos to investigate extensivity and physical boundary effects in RBC. The results from
homological analysis are also compared to other dimensionality reduction techniques such as Karhunen-Loeve decomposition and Fourier analysis.
|
3 |
Caracterização de imagens utilizando redes neurais artificiaisRibeiro, Eduardo Ferreira 09 June 2009 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Image representation in Content Based Image Retrieval systems is a
fundamental task. The
results obtained by these systems strongly depend on the choice of
features selected to represent
an image. Works in the literature show that intelligent techniques are
used to minimize the
semantic gap between the limited power of machine interpretation and
human subjectivity.
In this work the use of artificial neural networks to characterize
images in a high-level
space from an initial characterization based on low-level features
(color, shape and texture) is
proposed.
Experiments on 3 databases of various kinds, one with general images
(BD-12750 ), one with
texture images (Vistex-167 ) and other with buildings (ZuBuD) are
performed to exemplify the
application of the method and to show the effectiveness of the model.
Furthermore, the application of the proposed method in the high-level
characterization of
complex motions patterns is presented. / Em sistemas de Recuperação de Imagens Baseada em Conteúdo a
representação das imagens desempenham um papel fundamental. Os resultados obtidos por esses
sistemas dependem
fortemente da escolha das características selecionadas para representar
uma imagem. Trabalhos existentes na literatura evidenciam que técnicas inteligentes
conseguem minimizar o gap-
semântico existente entre o poder de interpretação limitado das máquinas
e a subjetividade
humana.
Neste trabalho é proposto o uso das redes neurais artificiais para
caracterizar imagens
neurosemânticamente à partir de uma caracterização inicial baseada em
características de baixo
nível (cor, forma e textura).
Testes em 3 bases de dados de naturezas diferentes, um de imagens mais
gerais (BD-12750 ),
um de texturas (Vistex-167 ) e outro de prédios (ZuBuD) exemplificam a
aplicação do método
como também mostram a eficácia do modelo.
Ainda é apresentada a aplicação do método proposto na caracterização
neurosemântica de
movimentos complexos em vídeos. / Mestre em Ciência da Computação
|
Page generated in 0.1313 seconds