Spelling suggestions: "subject:"feature transformation"" "subject:"eature transformation""
1 |
Cartoon Character Animation Using Human Facial Feature TransformationYoung, Chiao-Wen 25 July 2001 (has links)
NPR (Non-Photorealistic Rendering) is a new and quick-developed research topic in Image Processing. The main purpose of NPR is to generate sketching or comics, something different from photos, automatically by computer algorithms. Examples of such applications include pen-and-ink tree or watercolor. On the other hands, there is another technique called PR (Photorealistic Rendering). The goal of PR is to generate real objects by computer algorithms. The performance of a PR program depends on the realities of the objects generated by the PR program.
Furthermore, NPR includes two modes: one is with Physical Model and the other is not.
1.¡@With Physical Model: Researchers could write programs to simulate NPR by the properties of Physical Model.
2.¡@Without Physical Model: Researchers could write programs to simulate NPR by their observations and deliberation.
Our research belongs to the second one, NPR without Physical Model. In the efforts of artists, some common consensuses about human facial proportion are brought up gradually. Then, the common standards are produced.
In our research, there are several steps. First, read an input human front photo and separate main features from face, include the maximal and minimal values of left and right eyebrows, left and right eyes, left and right ears, nose and mouth, in horizontal and vertical. Then quantify these facial features. Next, we would construct a standard model based on the facial feature standard in arts. Compare the values we obtain from input human front photo with the values in the standard model, then we could obtain a cartoon face model. At last, adjust and exaggerate features according to scale relations between features of input face front photo and standard model and the distance among facial features. Keys of facial features transformation in this step are enlarging, shrinking, closing and separating. In varied parts, like face form and hair form, we hope to extract some sample feature points and use Bezier Curve in Numerical Analysis to draw them. That is because that lines of cartoon, unlike real human face, are sketched very smoothly and colors are uniform in general. We also provide several roles, one four grids comic and one cartoon animation. Users could import results of programs to those test images or image sequence, then complete these comics or cartoons based on input human face front photos. By this research, we hope that we could reach the goal that makes everyone as a main character of comics or cartoons.
|
2 |
Redução de dimensionalidade usando agrupamento e discretização ponderada para a recuperação de imagens por conteúdoPirolla, Francisco Rocha 19 November 2012 (has links)
Made available in DSpace on 2016-06-02T19:06:00Z (GMT). No. of bitstreams: 1
4756.pdf: 1515606 bytes, checksum: 12146689055c9826f258e527c3ae001a (MD5)
Previous issue date: 2012-11-19 / Universidade Federal de Sao Carlos / This work proposes two new techniques of feature vector pre-processing to improve CBIR and image classification systems: a method of feature transformation based on the k-means clustering approach (Feature Transformation based on K-means - FTK) and a method of Weighted Feature Discretization - WFD. The FTK method employs the clustering principle of k-means to compact the feature vector space. The WFD method performs a weighted feature discretization, privileging the most important feature ranges to distinguish images. The proposed methods were employed to pre-process the feature vector in CBIR and in classification approaches, comparing the results with the pre-processing performed by PCA (a well known feature transformation method) and the original feature vector: FTK produced a reduction in the feature vector size with an improving in the query precision and a improvement in the classification accuracy; WFD improved the query precision up to and a improvement in the classification accuracy; the combination of WFD and FTK improved also the query precision and a improvement in the classification accuracy. These are very important results, especially when compared with PCA results, which leads to a minor reduction in the feature vector size, a minor increase in the query precision and a minor increase in the classification accuracy. Also the proposed approaches have linear computational cost where PCA has a cubic computational cost. The results indicate that the proposed approaches are well-suited to perform image feature vector pre-processing improving the overall quality of CBIR and classification systems. / Neste trabalho, propomos diminuir o gap semântico e os problemas de maldição de dimensionalidade apresentando duas técnicas de préprocessamento do vetor de características com o objetivo de melhorar a recuperação de imagens baseada em conteúdo e sistemas de classificação de imagens: um método de redução de dimensionalidade do vetor de características original, baseado no algoritmo k-means, chamado FTK (Feature Transformation based on K-means) e um método de discretização ponderada de características que privilegia as faixas de características mais importantes para distinguir imagens, chamado WFD (Weighted Feature Discretization). Os métodos propostos foram utilizados para pré-processar os vetores de características nas abordagens CBIR e classificação, comparando o pré-processamento executado pelo método PCA e os resultados dos vetores de características originais. O algoritmo FTK promoveu uma redução no tamanho do vetor de características com uma melhoria na precisão da consulta e na precisão de classificação. O algoritmo WFD melhorou a precisão da consulta e classificação; a combinação de dos dois algoritmos propostos também melhorou a precisão da consulta e classificação. Estes resultados são muito importantes, especialmente quando comparados com os resultados do método PCA, que também leva a uma redução no tamanho do vetor de características, a um menor aumento na precisão da consulta e a menor aumento na precisão da classificação. Além disso, as técnicas propostas têm custo computacional linear, enquanto o PCA tem um custo computacional cúbico. Os resultados indicam que os métodos propostos são abordagens adequadas para realizar pré-processamento dos vetores de características de imagens em sistemas CBIR e em sistemas de classificação.
|
3 |
Caracterização de imagens utilizando redes neurais artificiaisRibeiro, Eduardo Ferreira 09 June 2009 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Image representation in Content Based Image Retrieval systems is a
fundamental task. The
results obtained by these systems strongly depend on the choice of
features selected to represent
an image. Works in the literature show that intelligent techniques are
used to minimize the
semantic gap between the limited power of machine interpretation and
human subjectivity.
In this work the use of artificial neural networks to characterize
images in a high-level
space from an initial characterization based on low-level features
(color, shape and texture) is
proposed.
Experiments on 3 databases of various kinds, one with general images
(BD-12750 ), one with
texture images (Vistex-167 ) and other with buildings (ZuBuD) are
performed to exemplify the
application of the method and to show the effectiveness of the model.
Furthermore, the application of the proposed method in the high-level
characterization of
complex motions patterns is presented. / Em sistemas de Recuperação de Imagens Baseada em Conteúdo a
representação das imagens desempenham um papel fundamental. Os resultados obtidos por esses
sistemas dependem
fortemente da escolha das características selecionadas para representar
uma imagem. Trabalhos existentes na literatura evidenciam que técnicas inteligentes
conseguem minimizar o gap-
semântico existente entre o poder de interpretação limitado das máquinas
e a subjetividade
humana.
Neste trabalho é proposto o uso das redes neurais artificiais para
caracterizar imagens
neurosemânticamente à partir de uma caracterização inicial baseada em
características de baixo
nível (cor, forma e textura).
Testes em 3 bases de dados de naturezas diferentes, um de imagens mais
gerais (BD-12750 ),
um de texturas (Vistex-167 ) e outro de prédios (ZuBuD) exemplificam a
aplicação do método
como também mostram a eficácia do modelo.
Ainda é apresentada a aplicação do método proposto na caracterização
neurosemântica de
movimentos complexos em vídeos. / Mestre em Ciência da Computação
|
4 |
Monitoring Vehicle Suspension Elements Using Machine Learning Techniques / Tillståndsövervakning av komponenter i fordonsfjädringssystem genom maskininlärningsteknikerKarlsson, Henrik January 2019 (has links)
Condition monitoring (CM) is widely used in industry, and there is a growing interest in applying CM on rail vehicle systems. Condition based maintenance has the possibility to increase system safety and availability while at the sametime reduce the total maintenance costs.This thesis investigates the feasibility of using condition monitoring of suspension element components, in this case dampers, in rail vehicles. There are different methods utilized to detect degradations, ranging from mathematicalmodelling of the system to pure "knowledge-based" methods, using only large amount of data to detect patterns on a larger scale. In this thesis the latter approach is explored, where acceleration signals are evaluated on severalplaces on the axleboxes, bogieframes and the carbody of a rail vehicle simulation model. These signals are picked close to the dampers that are monitored in this study, and frequency response functions (FRF) are computed between axleboxes and bogieframes as well as between bogieframes and carbody. The idea is that the FRF will change as the condition of the dampers change, and thus act as indicators of faults. The FRF are then fed to different classificationalgorithms, that are trained and tested to distinguish between the different damper faults.This thesis further investigates which classification algorithm shows promising results for the problem, and which algorithm performs best in terms of classification accuracy as well as two other measures. Another aspect explored is thepossibility to apply dimensionality reduction to the extracted indicators (features). This thesis is also looking into how the three performance measures used are affected by typical varying operational conditions for a rail vehicle,such as varying excitation and carbody mass. The Linear Support Vector Machine classifier using the whole feature space, and the Linear Discriminant Analysis classifier combined with Principal Component Analysis dimensionality reduction on the feature space both show promising results for the taskof correctly classifying upcoming damper degradations. / Tillståndsövervakning används brett inom industrin och det finns ett ökat intresse för att applicera tillståndsövervakning inom spårfordons olika system. Tillståndsbaserat underhåll kan potentiellt öka ett systems säkerhet och tillgänglighetsamtidigt som det kan minska de totala underhållskostnaderna.Detta examensarbete undersöker möjligheten att applicera tillståndsövervakning av komponenter i fjädringssystem, i detta fall dämpare, hos spårfordon. Det finns olika metoder för att upptäcka försämringar i komponenternas skick, från matematisk modellering av systemet till mer ”kunskaps-baserade” metodersom endast använder stora mängder data för att upptäcka mönster i en större skala. I detta arbete utforskas den sistnämnda metoden, där accelerationssignaler inhämtas från axelboxar, boggieramar samt vagnskorg från en simuleringsmodellav ett spårfordon. Dessa signaler är extraherade nära de dämpare som övervakas, och används för att beräkna frekvenssvarsfunktioner mellan axelboxar och boggieramar, samt mellan boggieramar och vagnskorg. Tanken är att frekvenssvarsfunktionerna förändras när dämparnas skick förändras ochpå så sätt fungera som indikatorer av dämparnas skick. Frekvenssvarsfunktionerna används sedan för att träna och testa olika klassificeringsalgoritmer för att kunna urskilja olika dämparfel.Detta arbete undersöker vidare vilka klassificeringsalgoritmer som visar lovande resultat för detta problem, och vilka av dessa som presterar bäst med avseende på noggrannheten i prediktionerna, samt två andra mått på algoritmernasprestanda. En annan aspekt som undersöks är möjligheten att applicera dimensionalitetsminskning på de extraherade indikatorerna. Detta arbete undersöker också hur de tre prestandamåtten som används påverkas av typiska förändringar i driftsförhållanden för ett spårfordon såsom varierande exciteringfrån spåret och vagnkorgsmassa. Resultaten visar lovande prestanda för klassificeringsalgoritmen ”Linear Support Vector Machine” som använder hela rymden med felindikatorer, samt algoritmen ”Linear Discriminant Analysis” i kombination med ”Principal Component Analysis” dimensionalitetsreducering.
|
Page generated in 0.1442 seconds