Spelling suggestions: "subject:"image compression. video compression."" "subject:"image compression. ideo compression.""
1 |
Hybrid transform, spatial decorrelation and unified coding system for image and video compression /Lee, Kenneth Ka Chun. January 2004 (has links) (PDF)
Thesis (Ph.D.)--City University of Hong Kong, 2004. / "Submitted to Department of Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy" Includes bibliographical references (leaves 145-158)
|
2 |
Optimization of entropy coding efficiency under complexity constraints in image and video compression /Ling, Fan. January 1998 (has links)
Thesis (Ph. D.)--Lehigh University, 1998. / Includes vita. Bibliography: leaves 139-143.
|
3 |
Algorithms for compression of high dynamic range images and videoDolzhenko, Vladimir January 2015 (has links)
The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented.
|
4 |
Image-video compression, encryption and information hiding /Maniccam, Suchindran S. January 2001 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Electrical Engineering Department, 2001. / Includes bibliographical references (leaves 50-52).
|
5 |
Reconstructing compressed photo and video dataLewis, Andrew Benedict January 2012 (has links)
No description available.
|
6 |
Multiresolution scalable image and video segmentationAkhlaghian Tab, Fardin. January 2005 (has links)
Thesis (Ph.D.)--University of Wollongong, 2005. / Typescript. Includes bibliographical references: leaf 223-249.
|
Page generated in 0.4209 seconds