• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 57
  • 57
  • 57
  • 25
  • 17
  • 16
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Novel Image Interpolation Schemes with Applications to Frame Rate Conversion and View Synthesis

Rezaee Kaviani, Hoda January 2018 (has links)
Image interpolation is the process of generating a new image utilizing a set of available images. The available images may be taken with a camera at different times, or with multiple cameras and from different viewpoints. Usually, the interpolation problem in the first scenario is called Frame Rate-Up Conversion (FRUC), and the second one view synthesis. This thesis focuses on image interpolation and addresses both FRUC and view synthesis problems. We propose a novel FRUC method using optical flow motion estimation and a patch-based reconstruction scheme. FRUC interpolates new frames between original frames of a video to increase the number of frames, and increases motion continuity. In our approach first, forward and backward motion vectors are obtained using an optical flow algorithm, and reconstructed versions of the current and previous frames are generated by our patch-based reconstruction scheme. Using the original and reconstructed versions of the current and previous frames, two mismatch masks are obtained. Then two versions of the middle frame are generated using a patch-based scheme, with estimated motion vectors and the current and previous frames. Finally, a middle mask, which identifies the mismatch areas of the two middle frames is reconstructed. Using these three masks, the best candidates for interpolation are selected and fused to obtain the final middle frame. Due to the patch-based nature of our interpolation scheme most of the holes and cracks will be filled. Although there is always a probability of having holes, the size and number of such holes are much smaller than those that would be generated using pixel-based mapping. The rare holes are filled using existing hole-filling algorithms. With fewer and smaller holes, simpler hole-filling algorithms can be applied to the image and the overall complexity of the required post processing decreases. View synthesis is the process of generating a new (virtual) view using available ones. Depending on the amount of available geometric information, view synthesis techniques can be divided into three categories: Image Based Rendering (IBR), Depth Image Based Rendering (DIBR), and Model Based Rendering (MBR). We introduce an adaptive version, patch-based scheme for IBR. This patch-based scheme reduces the size and number of holes during reconstruction. The size of patch is determined in response to edge information for better reconstruction, especially near the boundaries. In the first stage of the algorithm, disparity is obtained using optical flow estimation. Then, a reconstructed version of the left and right views are generated using our adaptive patch-based algorithm. The mismatches between each view and its reconstructed version are obtained in the mismatch detection steps. This stage results in two masks as outputs, which help with the refinement of disparities and the selection of the best patches for final synthesis. Finally, the remaining holes are filled using our simple hole filling scheme and the refined disparities. The adaptive version still benefits from the overlapping effect of the patches for hole reduction. However, compared with our fixed-size version, it results in better reconstruction near the edges, object boundaries, and inside the highly textured areas. We also propose an adaptive patch-based scheme for DIBR. The proposed method avoids unnecessary warping which is a computationally expensive step in DIBR. We divide nearby views into blocks, and only warp the center of each block. To have a better reconstruction near the edges and depth discontinuities, the block size is selected adaptively. In the blending step, an approach is introduced to calculate and refine the blending weights. Many of the existing DIBR schemes warp all pixels of nearby views during interpolation which is unnecessary. We show that using our adaptive patch-based scheme, it is possible to reduce the number of required warping without degrading the overall quality compared with existing schemes. / Thesis / Doctor of Philosophy (PhD)
22

Image Quality Assessment of 3D Synthesized Views / Évaluation de la qualité des images obtenues par synthèse de vues 3D

Tian, Shishun 22 March 2019 (has links)
Depth-Image-Based Rendering (DIBR) est une technologie fondamentale dans plusieurs applications liées à la 3D, telles que la vidéo en mode point de vue libre (FVV), la réalité virtuelle (VR) et la réalité augmentée (AR). Cependant, l'évaluation de la qualité des vues synthétisées par DIBR a également posé de nouveaux problèmes, car ce processus induit de nouveaux types de distorsions, qui sont intrinsèquement différentes des distorsions provoquées par le codage vidéo. Ce travail est destiné à mieux évaluer la qualité des vues synthétisées par DIBR en multimédia immersif. Au chapitre 2, nous proposons deux métriques complètements sans référence (NR). Le principe de la première métrique NR NIQSV consiste à utiliser plusieurs opérations morphologiques d’ouverture et de fermeture pour détecter et mesurer les distorsions, telles que les régions floues et l’effritement. Dans la deuxième métrique NR NIQSV+, nous améliorons NIQSV en ajoutant un détecteur de “black hole” et une détection “stretching”.Au chapitre 3, nous proposons deux métriques de référence complète pour traiter les distorsions géométriques à l'aide d'un masque de désocclusion et d'une méthode de correspondance de blocs multi-résolution. Au chapitre 4, nous présentons une nouvelle base de données d'images synthétisée par DIBR avec ses scores subjectifs associés. Ce travail se concentre sur les distorsions uniquement induites par différentes méthodes de synthèse de DIBR qui déterminent la qualité d’expérience (QoE) de ces applications liées à DIBR. En outre, nous effectuons également une analyse de référence des mesures d'évaluation de la qualité objective de pointe pour les vues synthétisées par DIBR sur cette base de données. Le chapitre 5 conclut les contributions de cette thèse et donne quelques orientations pour les travaux futurs. / Depth-Image-Based Rendering (DIBR) is a fundamental technology in several 3D-related applications, such as Free viewpoint video (FVV), Virtual Reality (VR) and Augmented Reality (AR). However, new challenges have also been brought in assessing the quality of DIBR-synthesized views since this process induces some new types of distortions, which are inherently different from the distortions caused by video coding. This work is dedicated to better evaluate the quality of DIBRsynthesized views in immersive multimedia. In chapter 2, we propose a completely No-reference (NR) metric. The principle of the first NR metrics NIQSV is to use a couple of opening and closing morphological operations to detect and measure the distortions, such as “blurry regions” and “crumbling”. In the second NR metric NIQSV+, we improve NIQSV by adding a “black hole” and a “stretching” detection. In chapter 3, we propose two Fullreference metrics to handle the geometric distortions by using a dis-occlusion mask and a multi-resolution block matching methods.In chapter 4, we present a new DIBR-synthesized image database with its associated subjective scores. This work focuses on the distortions only induced by different DIBR synthesis methods which determine the quality of experience (QoE) of these DIBR related applications. In addition, we also conduct a benchmark of the state-of-the-art objective quality assessment metrics for DIBR-synthesized views on this database. The chapter 5 concludes the contributions of this thesis and gives some directions of future work.
23

Reconstructing specular objects with Image Based Rendering using Color Caching

Chhabra, Vikram 27 April 2001 (has links)
Various Image Based Rendering (IBR) techniques have been proposed to reconstruct scenes from its images. Voxel-based IBR algorithms reconstruct Lambertian scenes well, but fail for specular objects due to limitations of their consistency checks. We show that the conventional consistency techniques fail due to the large variation in reflected color of the surface for different viewing positions. We present a new consistency approach that can predict this variation in color and reconstruct specular objects present in the scene. We also present an evaluation of our technique by comparing it with three other consistency methods.
24

3D Reconstruction of Human Faces from Reflectance Fields

Johansson, Erik January 2004 (has links)
<p>Human viewers are extremely sensitive to the appearanceof peoples faces, which makes the rendering of realistic human faces a challenging problem. Techniques for doing this have continuously been invented and evolved since more than thirty years. </p><p>This thesis makes use of recent methods within the area of image based rendering, namely the acquisition of reflectance fields from human faces. The reflectance fields are used to synthesize and realistically render models of human faces. </p><p>A shape from shading technique, assuming that human skin adheres to the Phong model, has been used to estimate surface normals. Belief propagation in graphs has then been used to enforce integrability before reconstructing the surfaces. Finally, the additivity of light has been used to realistically render the models. </p><p>The resulting models closely resemble the subjects from which they were created, and can realistically be rendered from novel directions in any illumination environment.</p>
25

A true virtual window

Radikovic, Adrijan Silvester 17 February 2005 (has links)
Previous research from environmental psychology shows that human well-being suffers in windowless environments in many ways and a window view of nature is psychologically and physiologically beneficial to humans. Current window substitutes, still images and video, lack three dimensional properties necessary for a realistic viewing experience – primarily motion parallax. We present a new system using a head-coupled display and image-based rendering to simulate a photorealistic artificial window view of nature with motion parallax. Evaluation data obtained from human subjects suggest that the system prototype is a better window substitute than a static image and has significantly more positive effects on observers’ moods. The test subjects judged the system prototype as a good simulation of, and acceptable replacement for, a real window, and accorded it much higher ratings for realism and preference than a static image.
26

3D Reconstruction of Human Faces from Reflectance Fields

Johansson, Erik January 2004 (has links)
Human viewers are extremely sensitive to the appearanceof peoples faces, which makes the rendering of realistic human faces a challenging problem. Techniques for doing this have continuously been invented and evolved since more than thirty years. This thesis makes use of recent methods within the area of image based rendering, namely the acquisition of reflectance fields from human faces. The reflectance fields are used to synthesize and realistically render models of human faces. A shape from shading technique, assuming that human skin adheres to the Phong model, has been used to estimate surface normals. Belief propagation in graphs has then been used to enforce integrability before reconstructing the surfaces. Finally, the additivity of light has been used to realistically render the models. The resulting models closely resemble the subjects from which they were created, and can realistically be rendered from novel directions in any illumination environment.
27

Real-time Arbitrary View Rendering From Stereo Video And Time-of-flight Camera

Ates, Tugrul Kagan 01 January 2011 (has links) (PDF)
Generating in-between images from multiple views of a scene is a crucial task for both computer vision and computer graphics fields. Photorealistic rendering, 3DTV and robot navigation are some of many applications which benefit from arbitrary view synthesis, if it is achieved in real-time. Most modern commodity computer architectures include programmable processing chips, called Graphics Processing Units (GPU), which are specialized in rendering computer generated images. These devices excel in achieving high computation power by processing arrays of data in parallel, which make them ideal for real-time computer vision applications. This thesis focuses on an arbitrary view rendering algorithm by using two high resolution color cameras along with a single low resolution time-of-flight depth camera and matching the programming paradigms of the GPUs to achieve real-time processing rates. Proposed method is divided into two stages. Depth estimation through fusion of stereo vision and time-of-flight measurements forms the data acquisition stage and second stage is intermediate view rendering from 3D representations of scenes. Ideas presented are examined in a common experimental framework and practical results attained are put forward. Based on the experimental results, it could be concluded that it is possible to realize content production and display stages of a free-viewpoint system in real-time by using only low cost commodity computing devices.
28

A true virtual window

Radikovic, Adrijan Silvester 17 February 2005 (has links)
Previous research from environmental psychology shows that human well-being suffers in windowless environments in many ways and a window view of nature is psychologically and physiologically beneficial to humans. Current window substitutes, still images and video, lack three dimensional properties necessary for a realistic viewing experience – primarily motion parallax. We present a new system using a head-coupled display and image-based rendering to simulate a photorealistic artificial window view of nature with motion parallax. Evaluation data obtained from human subjects suggest that the system prototype is a better window substitute than a static image and has significantly more positive effects on observers’ moods. The test subjects judged the system prototype as a good simulation of, and acceptable replacement for, a real window, and accorded it much higher ratings for realism and preference than a static image.
29

A Prototype For An Interactive And Dynamic Image-Based Relief Rendering System / En prototyp för ett interaktivt och dynamisktbildbaserat relief renderingssystem

Bakos, Niklas January 2002 (has links)
<p>In the research of developing arbitrary and unique virtual views from a real- world scene, a prototype of an interactive relief texture mapping system capable of processing video using dynamic image-based rendering, is developed in this master thesis. The process of deriving depth from recorded video using binocular stereopsis is presented, together with how the depth information is adjusted to be able to manipulate the orientation of the original scene. When the scene depth is known, the recorded organic and dynamic objects can be seen from viewpoints not available in the original video.</p>
30

MÃtodo dinÃmico para troca de representaÃÃo em sistemas hÃbridos de renderizaÃÃo de multidÃes / A Dynamic Representation-Switch Method for Hybrid Crowd Rendering Systems

Erasmo Artur da Silva JÃnior 05 March 2013 (has links)
nÃo hà / Ambientes providos de multidÃes sÃo empregados em diversas aplicaÃÃes, como jogos, simuladores e editores. Muitas destas aplicaÃÃes nÃo requerem somente a renderizaÃÃo de agentes animados de forma realÃstica e detalhada, mas que seja executada suavemente em tempo real, tarefa que facilmente esgota os recursos do sistema (mesmo considerando hardware no estado da arte). Por conta disso,a renderizaÃÃo de multidÃes em tempo real permanece como um desafio dentro da computaÃÃo grÃfica. Abordagens explorando nÃvel de detalhe, descarte por visibilidade e renderizaÃÃo baseada em imagens foram propostas no intuito de viabilizar esta tarefa. As duas primeiras aumentam a eficiÃncia da renderizaÃÃo, mas as vezes nÃo sÃo suficientes para manter taxas de quadros por segundo interativas. Grande parte dos estudos acerca do tema se concentra em tÃcnicas de renderizaÃÃo baseadas em imagem, especificamente com o emprego de impostores. Neste trabalho à proposto um mÃtodo que faz o balanÃo da demanda computacional da renderizaÃÃo atravÃs da variaÃÃo da distÃncia do limiar onde ocorre a troca de representaÃÃo entre os modelos de geometria completa (malhas) e os baseados em imagem (impostores) de acordo com os recursos disponÃveis. / Environments populated with crowds are employed in various applications, such as games, simulators and editors. Many of these environments require not only a realistic and detailed rendering, but it must run smoothly in real-time. This task easily exhausts the systemâs resources, even considering the current state-of-the-art hardware. Therefore, crowd rendering in real-time remains a challenge in computer graphics. Approaches exploiting levels of detail, visibility culling and image-based rendering are presented in order to facilitate this task. The first two increase the efficiency of rendering, but sometimes are not enough to keep an interactive frame rate. Some researches on this subject focus on image-based rendering techniques, specifically with the use of impostors. In this work it is proposed a method that balances the computational demand of rendering job by varying the thresholdâs distance of the representation switch between full geometry (mesh) and image-based(impostors) models in accordance with the available resources.

Page generated in 0.1202 seconds