• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

Zaunseder, Sebastian, Trumpp, Alexander, Ernst, Hannes, Förster, Michael, Malberg, Hagen 12 August 2020 (has links)
Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are in fluenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.
2

Measuring Pulse Rate Variability During Motion Artifact with a Non-Contact, Multi-Imager Photoplethysmography System

Kiehl, Zachary Adam 11 May 2015 (has links)
No description available.
3

Optimal color channel combination across skin tones for remote heart rate measurement in camera-based photoplethysmography

Ernst, Hannes, Scherpf, Matthieu, Malberg, Hagen, Schmidt, Martin 16 September 2022 (has links)
Objective: The heart rate is an essential vital sign that can be measured remotely with camera-based photoplethysmography (cbPPG). Systems for cbPPG typically use cameras that deliver red, green, and blue (RGB) channels. The combination of these channels has been proven to increase signal-to-noise ratio (SNR) and heart rate measurement accuracy (ACC). However, many combinations remain untested, the comparison of proposed combinations on large datasets is insufficiently investigated, and the interplay with skin tone is rarely addressed. Methods: Eight regions of interest and eight color spaces with a total of 25 color channels were compared in terms of ACC and SNR based on the Binghamton-Pittsburgh-RPI Multimodal Spontaneous Emotion Database (BP4D+). Additionally, two systematic grid searches were performed to evaluate ACC in the space of linear combinations of the RGB channels. Results: Glabella and forehead regions of interest provided highest ACC (up to 74.1 %) and SNR (> -3 dB) with the hue channel H from HSV color space and the chrominance channel Q from NTSC color space. The grid searches revealed a global optimum of linear RGB combinations (ACC: 79.2 %). This optimum occurred for all skin tones, although ACC dropped for darker skin tones. Conclusion: Through systematic grid searches we were able to identify the skin tone independent optimal linear RGB color combination for measuring heart rate with cbPPG. Our results proved on a large dataset that the identified optimum outperformed conventionally used color channels. Significance: The presented findings provide useful evidence for future considerations of algorithmic approaches for cbPPG.
4

An Imaging Photoplethysmographic Analysis of the Effects of Internal Thoracic Artery Resection on Chest Wall Perfusion

Kukel, Imre 19 September 2022 (has links)
A prospective, non-randomized observational study involving forty-nine patients undergoing coronary artery bypass surgery (CABG) with a unilateral harvesting of the internal thoracic artery (ITA) was carried out at the Department of Cardiac Surgery, Herzzentrum Dresden University hospital. Using a commercially available industrial-grade RGB camera and normal indoor lighting, the chest wall of the patients was scanned before surgery and in three follow-up measurements. The primary aim of this thesis was to show whether iPPG is sensitive enough to detect global signal changes after a major surgery – CABG in this case – and local signal changes due to the removal of the ITA, the main supply vessel of the chest wall. As a secondary aim, the thesis looked at subgroups of data to show if differences in signal existed between the colour channels of the RGB camera, subdivisions of the thorax and the surgical technique used as well as to show if demographic factors had an impact on signal strength. With mathematical programs developed by the Technical University Dresden, the scanned optical data was transformed into signal to noise ratios (SNR) used in imaging photoplethysmographic (iPPG) studies. The signal data was analysed in R and, based on a stepwise deletion, a multivariable mixed effects model was constructed. Adjusted versions of this model were used for the analysis of the subgroups of the data. Analysis of the data showed a significant decrease of iPPG signal strength after the CABG surgery with a steeper decrease and an attenuated recovery on the side of the ITA harvesting. Even though the signal variations were relatively small, using the models in this thesis, the differences were reliably detected by iPPG. The analysis of the data from the subdivisions of the chest and from patients’ groups determined by the surgical technique showed a caudo-cranial signal gradient on the ITA side twenty-four hours after the surgery and a stronger signal in the Pedicled group within twenty-four hours after the surgery. The latter calculations, however, were based on a possibly biased sample and should be verified using a controlled sample in prospective randomised study designs. Demographic factors showed no significant correlation with iPPG signal strength. iPPG was able to detect relatively small signal variations that could be associated with changes of cutaneous perfusion after major surgery. Future development could lead to non-invasive monitoring devices in the clinical practice of post-surgery care.:1. Introduction 1 1.1. Coronary Artery Bypass Grafting (CABG) 1 1.1.1. Historical Overview 1 1.1.2. Coronary Grafts 3 1.1.2.1. Pedicled vs. Skeletonised Grafts 4 1.2. Plethysmography 5 1.2.1. Air-Displacement Plethysmography (APG) 5 1.2.2. Strain Gauge Plethysmography (SGP) 6 1.2.3. Impedance Plethysmography (IPG) 6 1.2.4. Photoplethysmography (PPG) 7 1.2.5. Imaging Photoplethysmography (iPPG) 8 1.3. Hypothesis and Aim of the Thesis 11 2. Methods 13 2.1. Study Setting and Patients 13 2.2. Camera and Technical Setup 14 2.3. Recording Area and Regions of Interest 15 2.4. Signal Processing 16 2.5. Statistical Analysis 17 3. Results 19 3.1. Descriptive Properties of the Data 19 3.2. Signal Strength in the Three Colour Channels 20 3.3. Choosing a Multilevel Model 21 3.4. The Effect of the Major Surgery on the Signal Strength in the Three Colour Channels 22 3.5. The Effect of the Unilateral Resection of the Internal Thoracic Artery 25 3.6. Results from the Model Fitted to the Data 27 3.7. The Effect of Cofactors 28 3.8. Data from the Subdivisions of the Chest 29 3.9. The Effect of the Surgical Technique 31 4. Discussion 34 4.1. Signal Strength in the Red, Green and Blue Colour Channels 34 4.2. Signal from the Entire Chest Area 36 4.3. Signal from the Subdivisions of the Chest 37 4.4. The Influence of the Surgical Technique on Signal Strength 38 5. Conclusion 39 6. Abstract 41 7. Zusammenfassung 42 8. References 44 9. Appendix 60 10. Acknowledgements 82 11. Resume 83 Anlage 184 Anlage 2 85 / Eine prospektive, nicht randomisierte Studie mit neunundvierzig Patienten geplant für eine koronare Bypassoperation (CABG) mit einseitiger Präparation der Arteria thoracica interna (ITA) wurde im Herzzentrum Dresden, Universitätsklinikum durchgeführt. In einer präoperativen und in drei postoperativen Messungen wurde die Brustwand bei den untersuchten Patienten unter normaler Innenbeleuchtung mit Hilfe einer handelsüblichen, industriellen RGB Kamera untersucht. Das primäre Ziel der Arbeit war zu zeigen, ob iPPG als Messmethode genug Sensitivität besitzt um globale Signal-Veränderungen nach einem großen Eingriff – die CABG in diesem Fall – und lokale Signaländerung nach der Abnahme der ITA, die Hauptversorgungsarterie der Brustwand, zu erkennen. Als sekundäres Ziel der Arbeit war zu eruieren, ob iPPG Signaldifferenzen zwischen den Farbkanälen der RGB Kamera, den Brustwandaufteilungen und den Arten der ITA Präparation sowie nach den demographischen Faktoren detektieren konnte. Die gemessenen Daten wurden unter Verwendung von Eigentumsprogrammen der Technischen Universität Dresden in den, bei plethysmographischen Studien genutzten, Signal zu Geräusch Quotienten (SNR - signal to noise ratios) umgewandelt. Die gewonnenen Signaldaten wurden in R verarbeitet und durch Verwendung der Methode schrittweise Löschung wurde ein multivariables gemischte Effekte Modell erstellt. Angepasste Versionen dieses Modells wurden für die Analyse von Patientensubgruppen verwendet. Die Datenanalyse ergab eine signifikante Abschwächung des Signals nach der CABG, wobei die Thorax-Seite mit der ITA Präparation zeigte, im Vergleich mit der anderen Thorax-Seite, eine stärkere Abnahme und eine gedämpfte Rückbildung der Signalstärke. Obwohl die detektierte Signaländerungen relativ klein waren, sie konnten durch die entwickelten Modelle mittels iPPG zuverlässig detektiert werden. Die weitere Analyse der Daten aus den Brustwandaufteilungen und von Patientensubgruppen definiert nach Präparationsart der ITA zeigte auf der ITA Seite eine caudo-craniale Zunahme der Signalstärke ab vierundzwanzig Stunden und ein stärkeres Signal in der pedikulierten Präparationsgruppe bis vierundzwanzig Stunden nach der Operation. Allerdings, diese letztere Berechnungen wurden auf einem möglicherweise unausgewogenen Muster durchgeführt und sollten dementsprechend auf kontrollierten Mustern in prospektiven randomisierten Studien verifiziert werden. Die demographischen Faktoren hatten keiner signifikanten Korrelation mit der iPPG Signalstärke. Die iPPG war geeignet kleine Signaländerungen assoziiert mit den erwarteten Änderungen der dermalen Perfusion bei einem großen chirurgischen Eingriff zu detektieren. Weitere Entwicklung der Technologie kann die Anwendung dieses nicht-invasive Monitoringsverfahren in der klinischen postoperativen Patientenversorgung ermöglichen.:1. Introduction 1 1.1. Coronary Artery Bypass Grafting (CABG) 1 1.1.1. Historical Overview 1 1.1.2. Coronary Grafts 3 1.1.2.1. Pedicled vs. Skeletonised Grafts 4 1.2. Plethysmography 5 1.2.1. Air-Displacement Plethysmography (APG) 5 1.2.2. Strain Gauge Plethysmography (SGP) 6 1.2.3. Impedance Plethysmography (IPG) 6 1.2.4. Photoplethysmography (PPG) 7 1.2.5. Imaging Photoplethysmography (iPPG) 8 1.3. Hypothesis and Aim of the Thesis 11 2. Methods 13 2.1. Study Setting and Patients 13 2.2. Camera and Technical Setup 14 2.3. Recording Area and Regions of Interest 15 2.4. Signal Processing 16 2.5. Statistical Analysis 17 3. Results 19 3.1. Descriptive Properties of the Data 19 3.2. Signal Strength in the Three Colour Channels 20 3.3. Choosing a Multilevel Model 21 3.4. The Effect of the Major Surgery on the Signal Strength in the Three Colour Channels 22 3.5. The Effect of the Unilateral Resection of the Internal Thoracic Artery 25 3.6. Results from the Model Fitted to the Data 27 3.7. The Effect of Cofactors 28 3.8. Data from the Subdivisions of the Chest 29 3.9. The Effect of the Surgical Technique 31 4. Discussion 34 4.1. Signal Strength in the Red, Green and Blue Colour Channels 34 4.2. Signal from the Entire Chest Area 36 4.3. Signal from the Subdivisions of the Chest 37 4.4. The Influence of the Surgical Technique on Signal Strength 38 5. Conclusion 39 6. Abstract 41 7. Zusammenfassung 42 8. References 44 9. Appendix 60 10. Acknowledgements 82 11. Resume 83 Anlage 184 Anlage 2 85
5

Non-contact Assessment of Acute Mental Stress with Camera-based Photoplethysmography

Ernst, Hannes 26 September 2024 (has links)
Acute mental stress is an everyday phenomenon that has evidently intensified over the past decades and poses significant health risks. Conventional methods for stress assessment are not suitable for everyday use. They are suitable only for clinical and laboratory assessment because they require full attention, limit the freedom of movement (sensors, cables), often require trained personnel or special equipment, and thus are cost-intensive. This work investigates camera-based photoplethysmography (cbPPG), a non-contact technique for the monitoring of cardiovascular vital signs, as an alternative for the assessment of acute mental stress that is suitable for everyday use. As a non-contact technique cbPPG is considered susceptible to artifacts. To overcome limitations of existing cbPPG methods, this work covers essential developments for the robust extraction of non-contact vital signs in addition to the assessment of acute mental stress. An experimental study was designed and conducted with 65 healthy participants to gain a database for cbPPG including synchronized reference measurements (e.g. electrocardiography, skin conductance, salivary cortisol concentration). The experimental study resulted in the „Dresden Multimodal Biosignal Dataset for the Mannheim Multi-component Stress Test“ (DMBD). In addition, the „Binghamton-Pittsburgh-RPI Multimodal Spontaneous Emotion Database“ (BP4D+) was utilized. For robust extraction of non-contact vital signs measured with cbPPG, a novel method for the extraction of cbPPG signals was developed: O3C. O3C optimizes the combination of the color channels of RGB cameras with an evaluation metric in a specialized, systematic grid search. Several investigations on properties of the novel method revealed that the grid search always identified a global optimum. O3C was independent of different skin tones and the choice of evaluation metric. Temporal normalization of the RGB color channels improved the transferability of O3C between datasets (DMBD, BP4D+). At the example of breath rate measurement, it was shown that the method behind O3C is transferable from pulse rate to other vital signs. In addition, a novel method for automatic, reference-free identification of erroneous measurements was developed on the basis of signal quality indexes (SQIs). The developments on robust extraction of non-contact vital signs contribute to the fundamentals of cardiovascular monitoring that is suitable for everyday use. Among other aspects, this forms the basis for non-contact assessment of acute mental stress with cbPPG. In the experimental study (DMBD), conventional reference methods showed distinct changes in psychometric variables, chemical biomarkers, and contact-based vital signs during acute mental stress. The results are widely in line with existing literature and indicated successful activation of the hypothalamic-pituitary-adrenal axis (HPA axis) as well as sympathetic activation of the autonomic nervous system. A special characteristic of this investigation on stress assessment resides in the large variety of synchronized reference parameters, which allows a side-by-side comparison of the effectiveness of different measurement techniques. To assess the physiological reaction to acute mental stress with non-contact technique, ten vital signs derived with cbPPG were analyzed. The cbPPG vital signs registered positive chronotropy, peripheral vasoconstriction, and altered respiration in accordance with reference measurements. Thus, they also successfully indicated sympathetic activation of the autonomic nervous system. In a machine learning approach, the cbPPG vital signs were effective in detecting the immediate stress response with a fairly high temporal resolution of 30 s. These investigations are unique in terms of their extent and the possibility to adduce diverse synchronized reference measurements for comparison. They provide valuable insights into capabilities and effectiveness of cbPPG for non-contact assessment of acute mental stress. The findings of this work pave the way for robust non-contact monitoring with cbPPG. At the example of acute mental stress, a method for physiological assessment of the human state that is suitable for everyday use has been presented. This provides new opportunities to make use of the great potential that cbPPG offers for numerous everyday applications (e.g. telemedical video consultations, adaptive human-machine interfaces).:1 Introduction .. 1.1 Relevance .. 1.2 Scope .. 1.3 Outline .. 1.4 Delineation 2 Physiological Fundamentals .. 2.1 Stress and Strain .. .. 2.1.1 Historical Development .. .. 2.1.2 Definition .. 2.2 Endocrine System .. 2.3 Autonomic Nervous System .. 2.4 Cardiovascular System .. .. 2.4.1 Heart .. .. 2.4.2 Vascular System .. .. 2.4.3 Facial Vasculature .. 2.5 Skin 3 Methods to Assess the Human Response to Acute Mental Stress .. 3.1 Clinical and Laboratory Procedures .. .. 3.1.1 Stress Induction .. .. 3.1.2 Stress Response Assessment .. 3.2 Biomedical Engineering Techniques .. .. 3.2.1 Conventional Techniques .. .. .. 3.2.1.1 Electrocardiography .. .. .. 3.2.1.2 Photoplethysmography .. .. .. 3.2.1.3 Blood Pressure Measurement .. .. .. 3.2.1.4 Electrodermal Activity .. .. .. 3.2.1.5 Vital Signs of Conventional Techniques .. .. 3.2.2 Non-contact Techniques .. .. .. 3.2.2.1 Overview .. .. .. 3.2.2.2 Comparison .. 3.3 Summary 4 Camera-based Photoplethysmography .. 4.1 Functional Principle .. 4.2 Measurement Technology .. 4.3 Pulse Rate Measurement .. 4.4 Algorithms for Signal Extraction .. .. 4.4.1 Image Processing .. .. 4.4.2 Channel Combination .. .. 4.4.3 Signal Processing .. .. 4.4.4 Excursus: A Note on Deep Learning .. .. 4.4.5 Summary .. 4.5 Application to Stress Assessment 5 Study Design .. 5.1 Binghamton-Pittsburgh-RPI Multimodal Spontaneous Emotion Database .. 5.2 Dresden Multimodal Biosignal Dataset for the Mannheim Multicomponent Stress Test .. .. 5.2.1 Protocol .. .. 5.2.2 Setup .. .. 5.2.3 Annotations .. .. 5.2.4 Cohort Summary 6 Investigations on Robust Extraction of Non-contact Vital Signs .. 6.1 Color Space Transformations .. 6.2 Novel Method for the Optimization of Color Channel Combinations .. 6.3 Impact of Skin Tone on the Optimal Color Channel Combination .. 6.4 Impact of Normalization on the Optimal Color Channel Combination .. 6.5 Impact of Evaluation Metric on the Optimal Color Channel Combination .. 6.6 Optimal Color Channel Combination for Breath Rate Measurement .. 6.7 Signal Quality Index Filtering .. 6.8 Summary 7 Investigations on the Assessment of Acute Mental Stress .. 7.1 Examination of Reference Parameters .. 7.2 Examination of Camera-based Vital Signs .. 7.3 Prediction from Camera-based Vital Signs .. 7.4 Summary 8 Conclusion .. 8.1 Summary .. 8.2 Outlook References Appendix .. A Schematic Structure of the Autonomic Nervous System .. B Other Conventional Techniques for Biosignal Acquisition .. C Recording and Synchronization of the Dresden Multimodal Biosignal Dataset for the Mannheim Multicomponent Stress Test .. D Definition of Regions of Interest From Facial Landmarks .. E Definition of Color Space Transformations .. F Extended Results of Camera-based Pulse Rate Measurement With Different Color Spaces and Regions of Interest .. G Level-Set Regions of Interest in the Experimental Study .. H Relative Accuracy Differences Across the Hemispherical Surface Grid for Multiple Settings .. I Descriptive Statistics for the Reference Vital Signs of the Experimental Study .. J Insignificant Reference Vital Signs of the Experimental Study .. K Statistics for the Binary Logistic Regression with Forward Selection .. .. K.1 Omnibus Tests of Model Coefficients .. .. K.2 Model Summary .. .. K.3 Hosmer and Lemeshow Test .. .. K.4 Classification Table .. .. K.5 Equation Variables / Akuter mentaler Stress ist ein alltägliches Phänomen, dass sich im Laufe der vergangenen Jahrzehnte nachweislich intensiviert hat und ein Risiko für die Gesundheit darstellt. Herkömmliche Methoden zur Stressbewertung sind nicht alltagstauglich. Sie eignen sich nur für Klinik und Labor, da sie volle Aufmerksamkeit erfordern, Bewegungsfreiheit einschränken (Sensoren, Kabel), zumeist Fachpersonal oder Spezialausrüstung voraussetzen und entsprechend kostenintensiv sind. Diese Arbeit beschäftigt sich mit der kamerabasierten Photoplethysmographie (cbPPG), einer kontaktlosen Technik zum Monitoring kardiovaskulärer Vitalparameter, als alltagstaugliche Alternative zur Bewertung der physiologischen Reaktion auf akuten mentalen Stress. Als kontaktlose Technologie gilt cbPPG allerdings als artefaktanfällig. Um Limitationen bestehender Methoden zu überwinden, umfasst diese Arbeit neben der Stressbewertung mit cbPPG essenzielle Weiterentwicklungen zur robusten Extraktion kontaktloser Vitalparameter. Um eine Datenbasis für cbPPG mit zahlreichen Referenzmessverfahren (z. B. Elektrokardiografie, Hautleitfähigkeit, Speichelkortisolkonzentration) zu schaffen, wurde eine Experimentalstudie mit 65 gesunden Probanden aufgesetzt. Daraus resultierte das „Dresden Multimodal Biosignal Dataset for the Mannheim Multi-component Stress Test“ (DMBD). Zusätzlich fand die „Binghamton-Pittsburgh-RPI Multimodal Spontaneous Emotion Database“ (BP4D+) Anwendung. Für die robuste Extraktion von Vitalparametern mit cbPPG wurde eine neuartige Methodik zur Signalextraktion entwickelt: O3C. O3C optimiert die Kombination der Farbkanäle einer RGB-Kamera in einer spezialisierten, systematischen Rastersuche anhand einer Evaluationsmetrik. Die Untersuchung zentraler Eigenschaften von O3C zeigte, dass stets ein globales Optimum der Rastersuche existiert und die neue Methode robust gegenüber verschiedenen Hauttönen und Evaluationsmetriken ist. Zeitliche Normalisierung der RGB-Farbkanäle verbesserte die Übertragbarkeit von O3C zwischen verschiedenen Datensätzen (DMBD, BP4D+). Am Beispiel der Atemratenmessung wurde gezeigt, dass die Methodik von O3C auf andere Vitalparameter übertragbar ist. Darüber hinaus wurde eine neue Methode zur referenzfreien Identifikation fehlerhafter Messungen mittels Signalqualitätsindizes (SQIs) entwickelt. Die Entwicklungen zur robusten Extraktion von Vitalparametern leisten einen grundlegenden Beitrag für das alltagstaugliche kardiovaskuläre Monitoring mit cbPPG. Damit schaffen sie unter anderem die Voraussetzung für die kontaktlose Stressbewertung mit cbPPG. Die Referenzmessverfahren der Experimentalstudie (DMBD) zeigten bei akutem mentalem Stress deutliche Veränderungen psychometrischer Variablen, chemischer Biomarker und kontaktbasiert erfasster Vitalparameter. Die Ergebnisse stehen in weitreichender Übereinstimmung mit bisheriger Literatur und wiesen die erfolgreiche Aktivierung der Hypothalamus-Hypophysen-Nebennierenrinden-Achse und die sympathische Aktivierung des autonomen Nervensystems aus. Eine Besonderheit dieser Untersuchung zur Stressbewertung liegt in der Vielfalt synchronisierter Referenzparameter, mit der sich die Effektivität verschiedener Referenzmessverfahren direkt gegenüberstellen lässt. Für die kontaktlose Bewertung der physiologischen Reaktion auf akuten mentalen Stress wurden zehn cbPPG Vitalparameter analysiert. Die cbPPG Vitalparameter erfassten positive Chronotropie, periphere Vasokonstriktion und veränderte Atmung, und zeigten damit ebenfalls die sympathische Aktivierung des autonomen Nervensystems erfolgreich an. Die cbPPG Vitalparameter eigneten sich darüber hinaus zur zuverlässigen automatisierten Detektion der unmittelbaren Stressreaktion mit einer hohen zeitlichen Auflösung von 30 s. Die Untersuchungen sind einzigartig in ihrem Umfang und der Möglichkeit, diverse Referenzmessverfahren zum Vergleich heranzuziehen. Sie liefern damit wertvolle Erkenntnisse über Möglichkeiten und Leistungsfähigkeit von cbPPG zur kontaktlosen Stressbewertung. Die Ergebnisse dieser Arbeit ebnen den Weg für ein robustes kontaktloses Monitoring mittels cbPPG. Am Beispiel akuten mentalen Stresses wurde eine Methode zur alltagstauglichen Bewertung physiologischer Zustände aufgezeigt. Damit eröffnen sich neue Möglichkeiten, das große Potenzial von cbPPG für zahlreiche Anwendungsfälle (z. B. adaptive Mensch-Maschine-Schnittstellen, telemedizinische Videokonsultationen) alltagstauglich zu erschließen.:1 Introduction .. 1.1 Relevance .. 1.2 Scope .. 1.3 Outline .. 1.4 Delineation 2 Physiological Fundamentals .. 2.1 Stress and Strain .. .. 2.1.1 Historical Development .. .. 2.1.2 Definition .. 2.2 Endocrine System .. 2.3 Autonomic Nervous System .. 2.4 Cardiovascular System .. .. 2.4.1 Heart .. .. 2.4.2 Vascular System .. .. 2.4.3 Facial Vasculature .. 2.5 Skin 3 Methods to Assess the Human Response to Acute Mental Stress .. 3.1 Clinical and Laboratory Procedures .. .. 3.1.1 Stress Induction .. .. 3.1.2 Stress Response Assessment .. 3.2 Biomedical Engineering Techniques .. .. 3.2.1 Conventional Techniques .. .. .. 3.2.1.1 Electrocardiography .. .. .. 3.2.1.2 Photoplethysmography .. .. .. 3.2.1.3 Blood Pressure Measurement .. .. .. 3.2.1.4 Electrodermal Activity .. .. .. 3.2.1.5 Vital Signs of Conventional Techniques .. .. 3.2.2 Non-contact Techniques .. .. .. 3.2.2.1 Overview .. .. .. 3.2.2.2 Comparison .. 3.3 Summary 4 Camera-based Photoplethysmography .. 4.1 Functional Principle .. 4.2 Measurement Technology .. 4.3 Pulse Rate Measurement .. 4.4 Algorithms for Signal Extraction .. .. 4.4.1 Image Processing .. .. 4.4.2 Channel Combination .. .. 4.4.3 Signal Processing .. .. 4.4.4 Excursus: A Note on Deep Learning .. .. 4.4.5 Summary .. 4.5 Application to Stress Assessment 5 Study Design .. 5.1 Binghamton-Pittsburgh-RPI Multimodal Spontaneous Emotion Database .. 5.2 Dresden Multimodal Biosignal Dataset for the Mannheim Multicomponent Stress Test .. .. 5.2.1 Protocol .. .. 5.2.2 Setup .. .. 5.2.3 Annotations .. .. 5.2.4 Cohort Summary 6 Investigations on Robust Extraction of Non-contact Vital Signs .. 6.1 Color Space Transformations .. 6.2 Novel Method for the Optimization of Color Channel Combinations .. 6.3 Impact of Skin Tone on the Optimal Color Channel Combination .. 6.4 Impact of Normalization on the Optimal Color Channel Combination .. 6.5 Impact of Evaluation Metric on the Optimal Color Channel Combination .. 6.6 Optimal Color Channel Combination for Breath Rate Measurement .. 6.7 Signal Quality Index Filtering .. 6.8 Summary 7 Investigations on the Assessment of Acute Mental Stress .. 7.1 Examination of Reference Parameters .. 7.2 Examination of Camera-based Vital Signs .. 7.3 Prediction from Camera-based Vital Signs .. 7.4 Summary 8 Conclusion .. 8.1 Summary .. 8.2 Outlook References Appendix .. A Schematic Structure of the Autonomic Nervous System .. B Other Conventional Techniques for Biosignal Acquisition .. C Recording and Synchronization of the Dresden Multimodal Biosignal Dataset for the Mannheim Multicomponent Stress Test .. D Definition of Regions of Interest From Facial Landmarks .. E Definition of Color Space Transformations .. F Extended Results of Camera-based Pulse Rate Measurement With Different Color Spaces and Regions of Interest .. G Level-Set Regions of Interest in the Experimental Study .. H Relative Accuracy Differences Across the Hemispherical Surface Grid for Multiple Settings .. I Descriptive Statistics for the Reference Vital Signs of the Experimental Study .. J Insignificant Reference Vital Signs of the Experimental Study .. K Statistics for the Binary Logistic Regression with Forward Selection .. .. K.1 Omnibus Tests of Model Coefficients .. .. K.2 Model Summary .. .. K.3 Hosmer and Lemeshow Test .. .. K.4 Classification Table .. .. K.5 Equation Variables

Page generated in 0.0846 seconds